
Rue de Stassart, 36 • B-1050 Bruxelles
Tel : +32 2 550 08 11 • Fax : +32 2 550 08 19

EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

WORKSHOP CWA 14050-6

AGREEMENT November 2000

ICS 35.200; 35.240.15; 35.240.40

Extensions for Financial Services (XFS) interface specification -
Release 3.0 - Part 6: Pin Keypad Device Class Interface

© 2000 CEN All rights of exploitation in any form and by any means reserved world-wide for
CEN National Members

Ref. No CWA 14050-6:2000 E

This CEN Workshop Agreement can in no way be held as being an official standard
as developed by CEN National Members.

Page 2
CWA 14050-6:2000

 Table of Contents

Foreword 4

1. Introduction 6

1.1 BACKGROUND TO RELEASE 3.0.. 6

1.2 XFS SERVICE-SPECIFIC PROGRAMMING... 6

2. Personal Identification Number (PIN) Keypads ... 8

3. References... 9

4. Info Commands.. 10

4.1 WFS_INF_PIN_STATUS... 10

4.2 WFS_INF_PIN_CAPABILITIES .. 11

4.3 WFS_INF_PIN_KEY_DETAIL... 1 3

4.4 WFS_INF_PIN_FUNCKEY_DETAIL... 14

4.5 WFS_INF_PIN_HSM_TDATA... 16

4.6 WFS_INF_PIN_KEY_DETAIL_EX .. 17

5. Execute Commands... 19

5.1 WFS_CMD_PIN_CRYPT .. 19

5.2 WFS_CMD_PIN_IMPORT_KEY ... 21

5.3 WFS_CMD_PIN_DERIVE_KEY.. 22

5.4 WFS_CMD_PIN_GET_PIN ... 23

5.5 WFS_CMD_PIN_LOCAL_DES... 25

5.6 WFS_CMD_PIN_CREATE_OFFSET.. 26

5.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE... 27

5.8 WFS_CMD_PIN_LOCAL_VISA .. 28

5.9 WFS_CMD_PIN_PRESENT_IDC ... 29

5.10 WFS_CMD_PIN_GET_PINBLOCK .. 30

5.11 WFS_CMD_PIN_GET_DATA ... 32

5.12 WFS_CMD_PIN_INITIALIZATION.. 33

5.13 WFS_CMD_PIN_LOCAL_BANKSYS... 34

5.14 WFS_CMD_PIN_BANKSYS_IO ... 35

5.15 WFS_CMD_PIN_RESET... 36

5.16 WFS_CMD_PIN_HSM_SET_TDATA.. 36

5.17 WFS_CMD_PIN_SECURE_MSG_SEND ... 37

5.18 WFS_CMD_PIN_SECURE_MSG_RECEIVE.. 38

5.19 WFS_CMD_PIN_GET_JOURNAL.. 39

5.20 WFS_CMD_PIN_IMPORT_KEY_EX .. 39

5.21 WFS_CMD_PIN_ENC_IO ... 41

6. Events 43

Page 3
CWA 14050-6:2000

6.1 WFS_EXEE_PIN_KEY .. 43

6.2 WFS_SRVE_PIN_INITIALIZED .. 43

6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS.. 43

6.4 WFS_SRVE_PIN_OPT_REQUIRED... 44

7. C - Header File 45

8. German ZKA GeldKarte 54

8.1 HOW TO USE THE SECURE_MSG COMMANDS... 54

8.2 PROTOCOL WFS_PIN_PROTISOAS .. 54

8.3 PROTOCOL WFS_PIN_PROTISOLZ... 55

8.4 PROTOCOL WFS_PIN_PROTISOPS .. 56

8.5 PROTOCOL WFS_PIN_PROTCHIPZKA ... 56

8.6 PROTOCOL WFS_PIN_PROTRAWDATA... 56

8.7 COMMAND SEQUENCE.. 57

Page 4
CWA 14050-6:2000

Foreword

This CWA is revision 3.0 of the XFS interface specification.

The move from an XFS 2.0 specification (CWA 13449) to a 3.0 specification has been prompted by a series of
factors.

Initially, there has been a technical imperative to extend the scope of the existing specification of the XFS Manager
to include new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now
over 2 years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards
this release.

The clear direction of the CEN/ISSS XFS Workshop, therefore, is the delivery of a new Release 3.0 specification
based on a C API. It will be delivered with the promise of the protection of technical investment for existing
applications and the design to safeguard future developments.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2000-10-18. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.0.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.0
(see CWA 13449) to Version 3.0 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Part 18: Identification Card Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0
(this CWA) - Programmer's Reference

Page 5
CWA 14050-6:2000

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0
(this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to
Version 3.0 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA)
- Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

Revision History:
1.0 May 24, 1993 Initial release of API and SPI specification
1.11 February 3, 1995 Separation of specification into separate documents for

API/SPI and service class definitions
2.00 November 11, 1996 Update release encompassing the self-service environment
3.00 October 18, 2000 Update release encompassing:

- new commands to support the German ZKA chip card
standard
– support of Banksys Security Control Module
- Added clarification note for Pin format 3624
- Added WFS_CMD_PIN_ENC_IO, which is currently used
for the swiss proprietary protocol only.
- Double and triple zero clarification in
WFS_CMD_PIN_GET_DATA
- key deletion in WFS_CMD_PIN_IMPORT_KEY inserted.

For a detailed description see CWA 14050-20
PIN Migration from Version 2.00 to Version 3.00, Revision
1.00, October 18, 2000.

Page 6
CWA 14050-6:2000

1. Introduction

1.1 Background to Release 3.0

The CEN XFS Workshop is a continuation of the Banking Solution Vendors Council workshop and maintains a
technical commitment to the Win 32 API. However, the XFS Workshop has extended the franchise of multi vendor
software by encouraging the participation of both banks and vendors to take part in the deliberations of the creation
of an industry standard. This move towards opening the participation beyond the BSVC's original membership has
been very succesful with a current membership level of more than 20 companies.

The fundamental aims of the XFS Workshop are to promote a clear and unambiguous specification for both service
providers and application developers. This has been achieved to date by sub groups working electronically and
quarterly meetings.

The move from an XFS 2.0 specification to a 3.0 specification has been prompted by a series of factors. Initially,
there has been a technical imperative to extend the scope of the existing specification of the XFS Manager to include
new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now
over 2 years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards
this release.

The clear direction of the XFS Workshop, therefore, is the delivery of a new Release 3.0 specification based on a C
API. It will be delivered with the promise of the protection of technical investment for existing applications and the
design to safeguard future developments.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of service
providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the
command is as similar as possible across all services, since a major objective of the Extensions for Financial
Services is to standardize command codes and structures for the broadest variety of services. For example, using the
WFSExecute function, the commands to read data from various services are as similar as possible to each other in
their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the specific capabilities likely to be
provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a service provider may receive a service-specific command that it does not support:

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is not considered to
be fundamental to the service. In this case, the service provider returns a successful completion, but does no
operation. An example would be a request from an application to turn on a control indicator on a passbook
printer; the service provider recognizes the command, but since the passbook printer it is managing does not
include that indicator, the service provider does no operation and returns a successful completion to the
application.

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is considered to be
fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling

Page 7
CWA 14050-6:2000

application. An example would be a request from an application to a cash dispenser to dispense coins; the
service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes,
returns this error.

� The requested capability is not defined for the class of service providers by the XFS specification. In this case,
a WFS_ERR_INVALID_COMMAND error is returned to the calling application .

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

Page 8
CWA 14050-6:2000

2. Personal Identification Number (PIN) Keypads

This section describes the application program interface for personal identification number keypads (PIN pads) and
other encryption/decryption devices. This description includes definitions of the service-specific commands that can
be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This section describes the general interface for the following functions:
� Administration of encryption devices
� Loading of encryption keys
� Encryption / decryption
� Entering Personal Identification Numbers (PINs)
� PIN verification
� PIN block generation (encrypted PIN)
� Clear text data handling
� Function key handling
� PIN presentation to chipcard
� Read and write safety critical Terminal Data from/to HSM
� HSM and Chipcard Authentication

If the PIN Pad device has local display capability, display handling should be handled using the Text Terminal Unit
(TTU) interface.

The adoption of this specification does not imply the adoption of a specific security standard.

Important Notes:
� This revision of this specification does not define key management procedures; key management is

vendor-specific.
� Key space management is customer-specific, and is therefore handled by vendor-specific

mechanisms.
� Only numeric PIN pads are handled in this specification.

This specification also supports the Hardware Security Module (HSM), which is necessary for the German ZKA
Electronic Purse transactions. Furthermore the HSM stores terminal specific data.
This data will be compared against the message data fields (Sent and Received ISO8583 messages) prior to HSM-
MAC generation/verification. HSM-MACs are generated/verified only if the message fields match the data stored.

Keys used for cryptographic HSM functions are stored separate from other keys. This must be considered when
importing keys.

This version of PinPad complies to the current ZKA specification 3.0. It supports loading and unloading against
card account for both card types (Type 0and Type 1) of the ZKA electronic purse. It also covers the necessary
functionality for ‘Loading against other legal tender’.

Key values are passed to the API as binary hexadecimal values, for example:
0123456789ABCDEF = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF

Page 9
CWA 14050-6:2000

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.00, October 18, 2000

Page 10
CWA 14050-6:2000

4. Info Commands

4.1 WFS_INF_PIN_STATUS

Description The WFS_INF_PIN_STATUS command returns several kinds of status information.

Input Param None.

Output Param LPWFSPINSTATUS lpStatus;

typedef struct _wfs_pin_status
{
WORD fwDevice;
WORD fwEncStat;
LPSTR lpszExtra;
} WFSPINSTATUS, * LPWFSPINSTATUS;

fwDevice
Specifies the state of the PIN pad device as one of the following flags:
Value Meaning
WFS_PIN_DEVONLINE The device is online (i.e. powered on and operable).
WFS_PIN_DEVOFFLINE The device is offline (e.g., the operator has taken the

device offline by turning a switch or pulling out the
device).

WFS_PIN_DEVPOWEROFF The device is powered off or physically not connected.
WFS_PIN_DEVNODEVICE There is no device intended to be there; e.g. this type of

self service machine does not contain such a device or it
is internally not configured.

WFS_PIN_DEVHWERROR The device is inoperable due to a hardware error.
WFS_PIN_DEVUSERERROR The device is present but a person is preventing proper

device operation.
WFS_PIN_DEVBUSY The device is busy and unable to process an execute

command at this time.

fwEncStat
Specifies the state of the Encryption Module as one of the following flags:
Value Meaning
WFS_PIN_ENCREADY The encryption module is initialized and ready (at least

one key is imported into the encryption module).
WFS_PIN_ENCNOTREADY The encryption module is not ready.
WFS_PIN_ENCNOTINITIALIZED The encryption module is not initialized (no master key

loaded).
WFS_PIN_ENCBUSY The encryption module is busy (implies that the device is

busy).
WFS_PIN_ENCUNDEFINED The encryption module state is undefined.
WFS_PIN_ENCINITIALIZED The encryption module is initialized and master key

(where required) and any other initial keys are loaded;
ready to import other keys.

lpszExtra
Specifies a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extendable by service providers.
Each string will be null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

Page 11
CWA 14050-6:2000

4.2 WFS_INF_PIN_CAPABILITIES

Description This command is used to retrieve the capabilities of the PIN pad.

Input Param None.

Output Param LPWFSPINCAPS lpCaps;

typedef struct _wfs_pin_caps
{
WORD wClass;
WORD fwType;
BOOL bCompound;
USHORT usKeyNum;
WORD fwAlgorithms;
WORD fwPinFormats;
WORD fwDerivationAlgorithms;
WORD fwPresentationAlgorithms;
WORD fwDisplay;
BOOL bIDConnect;
WORD fwIDKey;
WORD fwValidationAlgorithms;
WORD fwKeyCheckModes;
LPSTR lpszExtra;
} WFSPINCAPS, * LPWFSPINCAPS;

wClass
Specifies the logical service class, value is:
WFS_SERVICE_CLASS_PIN

fwType
Specifies the type of the PIN pad security module as a combination of the following flags. PIN
entry is only possible when at least WFS_PIN_TYPEEPP and WFS_PIN_TYPEEDM are set.
In order to use the ZKA-Electronic purse, all flags must be set.

Value Meaning
WFS_PIN_TYPEEPP electronic PIN pad (keyboard data entry device)
WFS_PIN_TYPEEDM encryption/decryption module
WFS_PIN_TYPEHSM hardware security module (electronic PIN pad and

encryption module within the same physical unit)

bCompound
Specifies whether the logical device is part of a compound physical device and is either TRUE
or FALSE.

usKeyNum
Number of the keys which can be stored in the encryption/decryption module.

fwAlgorithms
Supported encryption modes; a combination of the following flags:

Value Meaning
WFS_PIN_CRYPTDESECB Electronic Code Book
WFS_PIN_CRYPTDESCBC Cipher Block Chaining
WFS_PIN_CRYPTDESCFB Cipher Feed Back
WFS_PIN_CRYPTRSA RSA Encryption
WFS_PIN_CRYPTECMA ECMA Encryption
WFS_PIN_CRYPTDESMAC MAC calculation using CBC
WFS_PIN_CRYPTTRIDESECB Triple DES with Electronic Code Book
WFS_PIN_CRYPTTRIDESCBC Triple DES with Cipher Block Chaining
WFS_PIN_CRYPTTRIDESCFB Triple DES with Cipher Feed Back
WFS_PIN_CRYPTTRIDESMAC Triple DES MAC calculation using CBC

Page 12
CWA 14050-6:2000

fwPinFormats
Supported PIN formats; a combination of the following flags:

Value Meaning
WFS_PIN_FORM3624 PIN left justified, filled with padding characters, PIN

length 4-16 digits. The Padding Character is a
Hexadecimal Digit in the range 0x00 to 0x0F.

WFS_PIN_FORMANSI PIN is preceded by 0x00 and the length of the PIN (0x04
to 0x0C), filled with padding character 0x0F to the right,
PIN length 4-12 digits, XORed with PAN (Primary
Account Number, minimum 12 digits without check
number)

WFS_PIN_FORMISO0 PIN is preceded by 0x00 and the length of the PIN (0x04
to 0x0C), filled with padding character 0x0F to the right,
PIN length 4-12 digits, XORed with PAN (Primary
Account Number, no minimum length specified, missing
digits are filled with 0x00)

WFS_PIN_FORMISO1 PIN is preceded by 0x01 and the length of the PIN (0x04
to 0x0C), padding characters are taken from a transaction
field (10 digits).

WFS_PIN_FORMECI2 (similar to WFS_PIN_FORM3624), PIN only 4 digits
WFS_PIN_FORMECI3 PIN is preceded by the length (digit), PIN length 4-6

digits, the padding character can range from X’0’ through
X’F’.

WFS_PIN_FORMVISA PIN is preceded by the length (digit), PIN length 4-6
digits. If the PIN length is less than six digits the PIN is
filled with X’0’ to the length of six, the padding character
can range from X ' 0 ' through X ' 9 ' (This format is also
referred to as VISA2).

WFS_PIN_FORMDIEBOLD PIN is padded with the padding character and may be not
encrypted, single encrypted or double encrypted.

WFS_PIN_FORMDIEBOLDCO PIN with the length of 4 to 12 digits, each one with a
value of X’0’ to X’9’, is preceded by the one-digit
coordination number with a value from X’0’ to X’F’,
padded with the padding character with a value from X’0’
to X’F’ and may be not encrypted, single encrypted or
double encrypted.

WFS_PIN_FORMVISA3 PIN with the length of 4 to 12 digits, each one with a
value of X’0’ to X’9’, is followed by a delimiter with the
value of X’F’ and then padded by the padding character
with a value between X’0’ to X’F’.

WFS_PIN_FORMBANKSYS PIN is encrypted and formatted according to the Banksys
Pin Block specifications.

fwDerivationAlgorithms
 Supported derivation algorithms; a combination of the following flags:

Value Meaning
WFS_PIN_CHIP_ZKA Algorithm for the derivation of a chip card individual key

as described by the German ZKA.

fwPresentationAlgorithms
 Supported presentation algorithms; a combination of the following flags:

Value Meaning
WFS_PIN_PRESENT_CLEAR Algorithm for the presentation of a clear text PIN to a

chipcard.

fwDisplay
Specifies the type of the display used in the PIN pad module as one of the following flags:

Value Meaning
WFS_PIN_DISPNONE no display unit
WFS_PIN_DISPLEDTHROUGH lights next to text guide user

Page 13
CWA 14050-6:2000

WFS_PIN_DISPDISPLAY a real display is available (this doesn’t apply for self-
service)

bIDConnect
Specifies whether the PIN pad is directly physically connected to the ID card unit. The value of
this parameter is either TRUE or FALSE.

fwIDKey
Specifies whether an ID key is supported as a combination of the following flags:

Value Meaning
WFS_PIN_IDKEYINITIALIZATION ID key supported in the

WFS_CMD_PIN_INITIALIZATION command.
WFS_PIN_IDKEYIMPORT ID key supported in the

WFS_CMD_PIN_IMPORT_KEY command.

fwValidationAlgorithms
Specifies the algorithms for PIN validation supported by the service; combination of the
following flags:

Value Meaning
WFS_PIN_DES DES algorithm
WFS_PIN_EUROCHEQUE EUROCHEQUE algorithm
WFS_PIN_VISA VISA algorithm
WFS_PIN_DES_OFFSET DES offset generation algorithm
WFS_PIN_BANKSYS Banksys algorithm.

fwKeyCheckModes
Specifies the key check modes that are supported to check the correctness of an imported key
value; can be a combination of the following flags:

Value Meaning
WFS_PIN_KCVSELF The key check value is created by an encryption of

the key with itself.
WFS_PIN_KCVZERO The key check value is created by an encryption of

the key with a zero value.

lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is
returned as a series of “key=value” strings so that it is easily extendable by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

For German HSMs this parameter will contain the following information:

- HSM=<HSM vendor> (can contain the values KRONE,ASCOM,IBM or NCR)

- JOURNAL=<0/1> (0 means that the HSM does not support journaling by the
WFS_CMD_PIN_GET_JOURNAL command, 1 means it supports journaling)

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpsExtra parameter
may not be device or vendor-independent.

4.3 WFS_INF_PIN_KEY_DETAIL

Description This command returns detailed information about the keys in the encryption module.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested.
If NULL, detailed information about all the keys in the encryption module is returned.

Page 14
CWA 14050-6:2000

Output Param LPWFSPINKEYDETAIL * lppKeyDetail;

Pointer to a null-terminated array of pointers to key detail structures.

typedef struct _wfs_pin_key_detail
{
LPSTR lpsKeyName;
WORD fwUse;
BOOL bLoaded;
} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

lpsKeyName
Specifies the name of the key.

fwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from
Operator) and is either TRUE or FALSE.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments None.

4.4 WFS_INF_PIN_FUNCKEY_DETAIL

Description This command returns information about the names of the Function Keys supported by the device.
Location information is also returned for the supported FDKs (Function Descriptor Keys). This
includes screen overlay FDKs.

This command should be issued before the first call to WFS_CMD_PIN_GET_PIN or
WFS_CMD_PIN_GET_DATA to determine which Function Keys (FKs) and Function Descriptor
Keys (FDKs) are available and where the FDKs are located. Then, in these two commands, they
can then be specified as Active and Terminate keys and options on the customer screen can be
aligned with the active FDKs.

Input Param LPULONG lpulFDKMask;

lpulFDKMask
Mask for the FDKs for which additional information is requested.
If 0x00000000, only information about function keys is returned.
If 0xFFFFFFFF, information about all the supported FDKs is returned.

Output Param LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;

typedef struct _wfs_pin_func_key_detail
{

 ULONG ulFuncMask;
USHORT usNumberFDKs;
LPWFSPINFDK * lppFDKs;
} WFSPINFUNCKEYDETAIL, * LPWFSPINFUNCKEYDETAIL;

Page 15
CWA 14050-6:2000

ulFuncMask
Specifies the function keys available for this physical device as a combination of the following
flags. The defines WFS_PIN_FK_0 through WFS_PIN_FK_9 correspond to numeric digits:

WFS_PIN_FK_0 (numeric digit 0)
WFS_PIN_FK_1 (numeric digit 1)
WFS_PIN_FK_2 (numeric digit 2)
WFS_PIN_FK_3 (numeric digit 3)
WFS_PIN_FK_4 (numeric digit 4)
WFS_PIN_FK_5 (numeric digit 5)
WFS_PIN_FK_6 (numeric digit 6)
WFS_PIN_FK_7 (numeric digit 7)
WFS_PIN_FK_8 (numeric digit 8)
WFS_PIN_FK_9 (numeric digit 9)
WFS_PIN_FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR
WFS_PIN_FK_BACKSPACE
WFS_PIN_FK_HELP
WFS_PIN_FK_DECPOINT
WFS_PIN_FK_00
WFS_PIN_FK_000
WFS_PIN_FK_RES1 (reserved for future use)
WFS_PIN_FK_RES2 (reserved for future use)
WFS_PIN_FK_RES3 (reserved for future use)
WFS_PIN_FK_RES4 (reserved for future use)
WFS_PIN_FK_RES5 (reserved for future use)
WFS_PIN_FK_RES6 (reserved for future use)
WFS_PIN_FK_RES7 (reserved for future use)
WFS_PIN_FK_RES8 (reserved for future use)

The remaining 6 bit masks may be used as vendor dependent keys.
WFS_PIN_FK_OEM1
WFS_PIN_FK_OEM2
WFS_PIN_FK_OEM3
WFS_PIN_FK_OEM4
WFS_PIN_FK_OEM5
WFS_PIN_FK_OEM6

usNumberFDKs
This value indicates the number of FDK structures returned. This number can be less than the
number of keys requested, if any keys are not supported.

lppFDKs
Pointer to an array of pointers to FDK structures. It is the responsibility of the application to
identify the mapping between the FDK code and the physical location of the FDK.

typedef struct _wfs_pin_fdk
{
ULONG ulFDK;
USHORT usXPosition;
USHORT usYPosition;
} WFSPINFDK, * LPWFSPINFDK;

ulFDK
Specifies the code returned by this FDK, defined as one of the following values:

WFS_PIN_FK_FDK01
WFS_PIN_FK_FDK02
WFS_PIN_FK_FDK03
WFS_PIN_FK_FDK04
WFS_PIN_FK_FDK05
WFS_PIN_FK_FDK06
WFS_PIN_FK_FDK07
WFS_PIN_FK_FDK08

Page 16
CWA 14050-6:2000

WFS_PIN_FK_FDK09
WFS_PIN_FK_FDK10
WFS_PIN_FK_FDK11
WFS_PIN_FK_FDK12
WFS_PIN_FK_FDK13
WFS_PIN_FK_FDK14
WFS_PIN_FK_FDK15
WFS_PIN_FK_FDK16
WFS_PIN_FK_FDK17
WFS_PIN_FK_FDK18
WFS_PIN_FK_FDK19
WFS_PIN_FK_FDK20
WFS_PIN_FK_FDK21
WFS_PIN_FK_FDK22
WFS_PIN_FK_FDK23
WFS_PIN_FK_FDK24
WFS_PIN_FK_FDK25
WFS_PIN_FK_FDK26
WFS_PIN_FK_FDK27
WFS_PIN_FK_FDK28
WFS_PIN_FK_FDK29
WFS_PIN_FK_FDK30
WFS_PIN_FK_FDK31
WFS_PIN_FK_FDK32

usXPosition
For FDKs, specifies the FDK position relative to the Left Hand side of the screen expressed as a
percentage of the width of the screen.

usYPosition
For FDKs, specifies the FDK position relative to the top of the screen expressed as a percentage
of the height of the screen.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

4.5 WFS_INF_PIN_HSM_TDATA

Description This function returns the current HSM terminal data. The data is returned as a series of
“tag/length/value” items.

Input Param None.

Ouput Param LPWFSXDATA lpxTData;

lpxTData
Contains the parameter settings as a series of “tag/length/value” items with no separators. See
command WFS_CMD_PIN_HSM_SET_TDATA for the tags supported.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

Page 17
CWA 14050-6:2000

4.6 WFS_INF_PIN_KEY_DETAIL_EX

Description This command returns extended detailed information about the keys in the encryption module.
Information like generation, version, activating and expiry date can be returned only for keys
which are loaded via the WFS_CMD_PIN_SECURE_MSG_SEND command with
WFS_PIN_PROTISOPS or a vendor dependant mechanism.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested.
If NULL, detailed information about all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAILEX * lppKeyDetailEx;

Pointer to a null-terminated array of pointers to key detail structures.

typedef struct _wfs_pin_key_detail_ex
{
LPSTR lpsKeyName;
DWORD dwUse;
BYTE bGeneration;
BYTE bVersion;
BYTE bActivatingDate[4];
BYTE bExpiryDate[4];
BOOL bLoaded;
} WFSPINKEYDETAILEX, * LPWFSPINKEYDETAILEX;

lpsKeyName
Specifies the name of the key.

dwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key
WFS_PIN_USEPINLOCAL key is used for local PIN check
WFS_PIN_USERSAPUBLIC key is used as a public key for RSA encryption
WFS_PIN_USERSAPRIVATE key is used as a private key for RSA encryption
WFS_PIN_USECHIPINFO key is used as KGKINFO key (only ZKA standard)
WFS_PIN_USECHIPPIN key is used as KGKPIN key (only ZKA standard)
WFS_PIN_USECHIPPS key is used as KPS key (only ZKA standard)
WFS_PIN_USECHIPMAC key is used as KMAC key (only ZKA standard)
WFS_PIN_USECHIPLT key is used as KGKLT key (only ZKA standard)
WFS_PIN_USECHIPMACLZ key is used as KPACMAC key (only ZKA standard)
WFS_PIN_USECHIPMACAZ key is used as KMASTER key (only ZKA standard)

bGeneration
Specifies the generation of the key as BCD value. Will be 0xff if no such information is
available for the key.

bVersion
Specifies the version of the key as BCD value. Will be 0xff if no such information is available
for the key.

bActivatingDate
Specifies the date when the key is activated as BCD value in the format YYYYMMDD. Will be
0xffffffff if no such information is available for the key.

Page 18
CWA 14050-6:2000

bExpiryDate
Specifies the date when the key expires as BCD value in the format YYYYMMDD. Will be
0xffffffff if no such information is available for the key.

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from
Operator) and is either TRUE or FALSE.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments None.

Page 19
CWA 14050-6:2000

5. Execute Commands

5.1 WFS_CMD_PIN_CRYPT

Description The input data is either encrypted or decrypted using the specified or selected encryption mode.
The available modes are defined in the WFS_INF_PIN_CAPABILITIES command.

This command can also be used for random number generation.

Furthermore it can be used for Message Authentication Code generation (i.e. MACing). For this
purpose, it is possible to specify how the data is formatted before the encryption.

The input data can be expanded with a fill-character to the necessary length (mandated by the
encryption algorithm being used).

The Start Value (or Initialization Vector) should be able to be passed encrypted like the specified
encryption/decryption key. It would therefore need to be decrypted with a loaded key so the name
of this key must also be passed. However, both these parameters are optional.

Input Param LPWFSPINCRYPT lpCrypt;

typedef struct _wfs_pin_crypt
{
WORD wMode;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
WORD wAlgorithm;
LPSTR lpsStartValueKey;
LPWFSXDATA lpxStartValue;
BYTE bPadding;
BYTE bCompression;
LPWFSXDATA lpxCryptData;
} WFSPINCRYPT, * LPWFSPINCRYPT;

wMode
Specifies whether to encrypt or decrypt, values are one of the following:

Value Meaning
WFS_PIN_MODEENCRYPT encrypt with key
WFS_PIN_MODEDECRYPT decrypt with key
WFS_PIN_MODERANDOM an 8 byte random value shall be returned (in this case

all the other input parameters are ignored)

This parameter does not apply to MACing.

lpsKey
Specifies the name of the stored key. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

lpxKeyEncKey
If NULL, lpsKey is used directly for encryption/decryption. Otherwise, lpsKey is used to
decrypt the encrypted key passed in lpxKeyEncKey and the result is used for
encryption/decryption. Key is a double length key when used for Triple DES
encryption/decryption. Users of this specification must adhere to local regulations when using
Triple DES. This value is ignored, if wMode equals WFS_PIN_MODERANDOM.

wAlgorithm
Specifies the encryption algorithm. Possible values are those described in
WFS_INF_PIN_CAPABILITIES. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

lpsStartValueKey
Specifies the name of the stored key used to decrypt the lpxStartValue to obtain the
Initialization Vector. If this parameter is NULL, lpxStartValue is used as the Initialization
Vector. This value is ignored, if wMode equals WFS_PIN_MODERANDOM.

Page 20
CWA 14050-6:2000

lpxStartValue
DES and Triple DES initialization vector for CBC / CFB encryption and MACing. If this
parameter is NULL lpsStartValueKey is used as the Start Value. If lpsStartValueKey is also
NULL, the default value for CBC / CFB / MAC is 16 hex digits 0x0. This value is ignored, if
wMode equals WFS_PIN_MODERANDOM.

bPadding
Specifies the padding character for encryption. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

bCompression
Specifies whether data is to be compressed (blanks removed) before building the MAC. If
bCompression is 0x00 no compression is selected, otherwise bCompression holds the
representation of the blank character in the actual code table. This value is ignored, if wMode
equals WFS_PIN_MODERANDOM.

lpxCryptData
Pointer to the data to be encrypted, decrypted, or MACed. This value is ignored, if wMode
equals WFS_PIN_MODERANDOM.

Output Param LPWFSXDATA lpxCryptData;

lpxCryptData
Pointer to the encrypted or decrypted data, MAC value or 8 byte random value.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_MODENOTSUPPORTED The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey or lpxStartValue is

not supported.
WFS_ERR_PIN_NOCHIPTRANSACTIVE A chipcard key is used as encryption key and

there is no chip transaction active.
WFS_ERR_PIN_ALGORITHMNOTSUPP The specified algorithm is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments The data type LPWFSXDATA is used to pass hexadecimal data and is defined as follows:

typedef struct _wfs_hex_data
{
USHORT usLength;
LPBYTE lpbData;
} WFSXDATA, *LPWFSXDATA;

usLength
Length of the byte stream pointed to by lpbData.

lpbData
Pointer to the binary data stream.

Page 21
CWA 14050-6:2000

5.2 WFS_CMD_PIN_IMPORT_KEY

Description The key passed by the application is loaded in the encryption module. The key can be passed in
clear text mode or encrypted with an accompanying “key encryption key”.

Input Param LPWFSPINIMPORT lpImport;

typedef struct _wfs_pin_import
{
LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxIdent;
LPWFSXDATA lpxValue;
WORD fwUse;
} WFSPINIMPORT, * LPWFSPINIMPORT;

lpsKey
Specifies the name of key being loaded.

lpsEncKey
If lpsEncKey is NULL the key is loaded directly into the encryption module. Otherwise,
lpsEncKey specifies a key name or a format name which were used to encrypt the key passed in
lpxValue.

lpxIdent
Specifies the key owner identification. The use of this parameter is vendor dependent.

lpxValue
Specifies the value of key to be loaded.

fwUse
Specifies the type of access for which the key can be used as a combination of the following
flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key

If fwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

Output Param LPWFSXDATA lpxKVC;

lpxKVC
pointer to the key verification code data that can be used for verification of the loaded key,
NULL if device does not have that capability.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key

of the specified type.

Page 22
CWA 14050-6:2000

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

5.3 WFS_CMD_PIN_DERIVE_KEY

Description A key is derived from input data using a key generating key and an initialization vector. The input
data can be expanded with a fill-character to the necessary length (mandated by the encryption
algorithm being used). The derived key is imported into the encryption module and is used for
encryption or decryption operations.

Input Param LPWFSPINDERIVE lpDerive;

typedef struct _wfs_pin_derive
{
WORD wDerivationAlgorithm;
LPSTR lpsKey;
LPSTR lpsKeyGenKey;
LPSTR lpsStartValueKey;
LPWFSXDATA lpxStartValue;
BYTE bPadding;
LPWFSXDATA lpxInputData;
LPWFSXDATA lpxIdent;
} WFSPINDERIVE, * LPWFSPINDERIVE;

wDerivationAlgorithm
Specifies the algorithm that is used for derivation. Possible values are:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the name where the derived key will be stored.

lpsKeyGenKey
Specifies the name of the key generating key that is used for the derivation.

lpsStartValueKey
Specifies the name of the stored key used to decrypt the lpxStartValue to obtain the
Initialization Vector. If this parameter is NULL, lpxStartValue is used as the Initialization
Vector.

lpxStartValue
DES initialization vector for the encryption step within the derivation.

bPadding
Specifies the padding character for the encryption step within the derivation.

lpxInputData
Pointer to the data to be used for key derivation.

lpxIdent
Specifies the key owner identification. The use of this parameter is vendor dependent.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized (or

not ready for some vendor specific reason).
WFS_ERR_PIN_INVALIDID The ID passed was not valid.

Page 23
CWA 14050-6:2000

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxStartValue is not supported.
WFS_ERR_PIN_ALGORITHMNOTSUPP The specified algorithm is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

5.4 WFS_CMD_PIN_GET_PIN

Description This function stores the PIN entry via the PIN pad. From the point this function is invoked, PIN
digit entries are not passed to the application. For each PIN digit, or any other active key entered,
an execute notification event is sent in order to allow an application to perform the appropriate
display action (i.e. when the PIN pad has no integrated display). The application is not informed
of the value entered, the execute notification only informs that a key has been depressed.

Some PIN pad devices do not inform the application as each PIN digit is entered, but locally
process the PIN entry based upon minimum PIN length and maximum PIN length input
parameters. These PIN pad devices which provide local PIN entry management and optional
display tracking may or may not notify the application of a minimum PIN length violation.

When the maximum number of PIN digits is entered, or a completion key is pressed after the
minimum number of PIN digits is entered, a WFS_EXEC_COMPLETE event message is sent to
the application. Once this notification is received, the output parameters are then returned to the
application from this function call. The depression of the <Cancel> key is also passed to the
application via the WFS_EXEC_COMPLETE event message.

If usMaxLen is zero, the service provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or
ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

Terminating keys have to be active keys to operate.

If this command is cancelled by a WFSCancelAsyncRequest or a WFSCancelBlockingCall the
PIN buffer is not cleared.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

Input Param LPWFSPINGETPIN lpGetPin;

typedef struct _wfs_pin_getpin
{
USHORT usMinLen;
USHORT usMaxLen;
BOOL bAutoEnd;
CHAR cEcho;
ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
} WFSPINGETPIN, * LPWFSPINGETPIN;

usMinLen
Specifies the minimum number of digits which must be entered for the PIN. A value of zero
indicates no minimum PIN length verification.

Page 24
CWA 14050-6:2000

usMaxLen
Specifies the maximum number of digits which can be entered for the PIN.

bAutoEnd
If bAutoEnd is set to true, the service provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. When usMaxLen is reached, the service provider will disable all numeric
keys. bAutoEnd is ignored when usMaxLen is set to 0.

cEcho
Specifies the replace character to be echoed on a local display for the PIN digit.

ulActiveFDKs
Specifies those FDKs which are active during the execution of the command.

ulActiveKeys
Specifies those (other) Function Keys which are active during the execution of the command.

ulTerminateFDKs
Specifies those FDKs which must terminate the execution of the command.

ulTerminateKeys
Specifies those (other) Function Keys which must terminate the execution of the command.

Output Param LPWFSPINENTRY lpEntry;

typedef struct _wfs_pin_entry
{
USHORT usDigits;
WORD wCompletion;
} WFSPINENTRY, * LPWFSPINENTRY;

usDigits
Specifies the number of PIN digits entered.

wCompletion
Specifies the reason for completion of the entry. Possible values are:
Value Meaning

WFS_PIN_COMPAUTO The command terminated automatically, because
maximum PIN length was reached.

WFS_PIN_COMPENTER The ENTER Function Key was pressed as terminating
key.

WFS_PIN_COMPCANCEL The CANCEL Function Key was pressed as terminating
key.

WFS_PIN_COMPCONTINUE Input continues, function key was pressed (this value is
only used in the execute event WFS_EXEE_PIN_KEY).

WFS_PIN_COMPCLEAR The CLEAR Function Key was pressed as terminating
key and the previous input is cleared.

WFS_PIN_COMPBACKSPACE The last input digit was cleared and the key was pressed
as terminating key.

WFS_PIN_COMPFDK Indicates input is terminated only if the FDK pressed was
set to be a terminating FDK.

WFS_PIN_COMPHELP The HELP Function Key was pressed as terminating key.
WFS_PIN_COMPFK A Function Key (FK) other than ENTER, CLEAR,

CANCEL, BACKSPACE, HELP was pressed as
terminating key.

WFS_PIN_COMPCONTFDK Input continues, FDK was pressed (this value is only used
in the execute event WFS_EXEE_PIN_KEY).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYINVALID At least one of the specified function keys or

FDKs is invalid.
WFS_ERR_PIN_KEYNOTSUPPORTED At least one of the specified function keys or

FDKs is not supported by the service provider.

Page 25
CWA 14050-6:2000

WFS_ERR_PIN_NOACTIVEKEYS There are no active function keys specified.
WFS_ERR_PIN_NOTERMINATEKEYS There are no terminate keys specified and

usMaxLen is not set to 0 and bAutoEnd is
FALSE.

WFS_ERR_PIN_MINIMUMLENGTH The minimum PIN length field is invalid or
greater than the maximum PIN length field.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_PIN_KEY A key has been pressed at the PIN pad.

Comments None.

5.5 WFS_CMD_PIN_LOCAL_DES

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the DES validation algorithm and locally verified for correctness. The
local DES verification is based on the IBM 3624 standard. The result of the verification is
returned to the application. This command will clear the PIN.

Input Param LPWFSPINLOCALDES lpLocalDES;

typedef struct _wfs_pin_local_des
{
LPSTR lpsValidationData;
LPSTR lpsOffset;
BYTE bPadding;
USHORT usMaxPIN;
USHORT usValDigits;
BOOL bNoLeadingZero;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WFSPINLOCALDES, * LPWFSPINLOCALDES;

lpsValidationData
Validation data

lpsOffset
Offset for the PIN block; if NULL then no offset is used.

bPadding
Specifies the padding character for validation data.

usMaxPIN
Maximum number of PIN digits to be used for validation.

usValDigits
Number of Validation digits to be used for validation.

bNoLeadingZero
If set to TRUE and the first digit of result of the modulo 10 addition is a X’0’, it is replaced
with X’1’ before performing the verification against the entered PIN. If set to FALSE, a leading
zero is allowed in entered PINs.

lpsKey
Name of the validation key

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). Used to

Page 26
CWA 14050-6:2000

convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPBOOL pbResult ;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

5.6 WFS_CMD_PIN_CREATE_OFFSET

Description This function is used to generate a PIN Offset that is used to verify PINs using the
WFS_CMD_PIN_LOCAL_DES execute command. The PIN offset is computed by combining
validation data with the keypad entered PIN. This command will clear the PIN.

Input Param LPWFSPINCREATEOFFSET lpPINOffset;

typedef struct _wfs_pin_create_offset
{
LPSTR lpsValidationData;
BYTE bPadding;
USHORT usMaxPIN;
USHORT usValDigits;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WFSPINCREATEOFFSET, * LPWFSPINCREATEOFFSET;

lpsValidationData
Validation data

bPadding
Specifies the padding character for validation data.

usMaxPIN
Maximum number of PIN digits to be used for PIN Offset creation.

usValDigits
Number of Validation Data digits to be used for PIN Offset creation.

lpsKey
Name of the validation key

lpxKeyEncKey
If NULL, lpsKey is used directly in PIN Offset creation. Otherwise, lpsKey is used to decrypt
the encrypted key passed in lpxKeyEncKey and the result is used in PIN Offset creation.

Page 27
CWA 14050-6:2000

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). Used to
convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPSTR lpsOffset;

lpsOffset
Computed PIN Offset.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.
WFS_ERR_PIN_NOTALLOWED PIN entered by the user is not allowed.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments The list of ‘forbidden’ PINs (values that cannot be chosen as a PIN, e.g. 1111) is configured in the
device in a vendor dependent way during the configuration of the system.

5.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the Eurocheque validation algorithm and locally verified for
correctness. The result of the verification is returned to the application. This command will clear
the PIN.

Input Param LPWFSPINLOCALEUROCHEQUE lpLocalEurocheque;

typedef struct _wfs_pin_local_eurocheque
{
LPSTR lpsEurochequeData;
LPSTR lpsPVV;
WORD wFirstEncDigits;
WORD wFirstEncOffset;
WORD wPVVDigits;
WORD wPVVOffset;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WFSPINLOCALEUROCHEQUE, * LPWFSPINLOCALEUROCHEQUE;

lpsEurochequeData
Track-3 Eurocheque data

lpsPVV
PIN Validation Value from track data.

wFirstEncDigits
Number of digits to extract after first encryption.

wFirstEncOffset
Offset of digits to extract after first encryption.

Page 28
CWA 14050-6:2000

wPVVDigits
Number of digits to extract for PVV.

wPVVOffset
Offset of digits to extract for PVV.

lpsKey
Name of the validation key.

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). Used to
convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPBOOL lpbResult;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

5.8 WFS_CMD_PIN_LOCAL_VISA

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the VISA validation algorithm and locally verified for correctness. The
result of the verification is returned to the application. This command will clear the PIN.

Input Param LPWFSPINLOCALVISA lpLocalVISA;

typedef struct _wfs_pin_local_visa
{
LPSTR lpsPAN;
LPSTR lpsPVV;
WORD wPVVDigits;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
} WFSPINLOCALVISA, * LPWFSPINLOCALVISA;

lpsPAN
Primary Account Number from track data.

lpsPVV
PIN Validation Value from track data.

Page 29
CWA 14050-6:2000

wPVVDigits
Number of digits of PVV.

lpsKey
Name of the validation key.

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

Output Param LPBOOL lpbResult;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

5.9 WFS_CMD_PIN_PRESENT_IDC

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the IDC presentation algorithm and presented to the smartcard
contained in the ID Card unit. The result of the presentation is returned to the application. This
command will clear the PIN.

Input Param LPWFSPINPRESENTIDC lpPresentIDC;

typedef struct _wfs_pin_presentidc
{
WORD wPresentAlgorithm;
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
LPVOID lpAlgorithmData;
} WFSPINPRESENTIDC, * LPWFSPINPRESENTIDC;

wPresentAlgorithm
Specifies the algorithm that is used for presentation. Possible values are: (see command
WFS_INF_PIN_CAPABILITIES).

wChipProtocol
Identifies the protocol that is used to communicate with the chip. Possible values are: (see
command WFS_INF_IDC_CAPABILITIES in the Identification Card Device Class Interface).

ulChipDataLength
Specifies the length of the byte stream pointed to by lpbChipData.

Page 30
CWA 14050-6:2000

lpbChipData
Points to the data to be sent to the chip.

lpAlgorithmData
Pointer to a structure that contains the data required for the specified presentation algorithm.
For the WFS_PIN_PRESENT_CLEAR algorithm, this structure is defined as:

typedef struct _wfs_pin_presentclear
{
ULONG ulPINPointer;
USHORT usPINOffset;
} WFSPINPRESENTCLEAR, * LPWFSPINPRESENTCLEAR;

ulPINPointer
Describes the byte position where to insert the PIN in the lpbChipData buffer. The first byte of
the lpbChipData buffer is numbered 0.

usPINOffset
Describes the bit position where to insert the PIN in the lpbChipData buffer. In each byte, the
most-significant bit is numbered 0, the less significant bit is numbered 7.

Output Param LPWFSPINPRESENTRESULT lpPresentResult;

typedef struct _wfs_pin_present_result
{
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
} WFSPINPRESENTRESULT, * LPWFSPINPRESENTRESULT;

wChipProtocol
Identifies the protocol that was used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure.

ulChipDataLength
Specifies the length of the byte stream pointed to by lpbChipData.

lpbChipData
Points to the data responded from the chip.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The ID card unit is not ready for PIN presentation

or for any vendor specific reason. The ID card
service provider, if any, may have generated a
service event that further describes the reason for
that error code.

WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.
WFS_ERR_PIN_PROTOCOLNOTSUPP The specified protocol is not supported by the

service provider.
WFS_ERR_PIN_INVALIDDATA An error occurred while communicating with the

chip.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.10 WFS_CMD_PIN_GET_PINBLOCK

Description This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the formats
specified in the WFS_INF_PIN_CAPABILITIES command. This command clears the PIN.

Page 31
CWA 14050-6:2000

Input Param LPWFSPINBLOCK lpPinBlock;

typedef struct _wfs_pin_block
{
LPSTR lpsCustomerData;
LPSTR lpsXORData;
BYTE bPadding;
WORD wFormat;
LPSTR lpsKey;
LPSTR lpsKeyEncKey;
} WFSPINBLOCK, * LPWFSPINBLOCK;

lpsCustomerData
Used for ANSI, ISO-0 and ISO-1 algorithm to build the formatted PIN. For ANSI and ISO-0
the PAN (Primary Account Number) is used, for ISO-1 a ten digit transaction field is required.
If not used a NULL is required.
Used for DIEBOLD with coordination number, as a two digit coordination number.

lpsXORData
If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation.

bPadding
Specifies the padding character.

wFormat
Specifies the format of the PIN block. Possible values are:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the key used to encrypt the formatted pin for the first time, NULL if no encryption is
required. If this specifies a double length key, triple DES encryption will be performed.

lpsKeyEncKey
Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required.

Output Param LPWFSXDATA lpxPinBlock;

lpxPinBlock
Pointer to the encrypted/decrypted data.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_NOPIN PIN has been cleared.
WFS_ERR_PIN_FORMATNOTSUPP The specified format is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

Page 32
CWA 14050-6:2000

5.11 WFS_CMD_PIN_GET_DATA

Description This function is used to return keystrokes entered by the user. It will automatically set the PIN pad
to echo characters on the display if there is a display. For each keystroke an execute notification
event is sent in order to allow an application to perform the appropriate display action (i.e. when
the PIN pad has no integrated display).

If usMaxLen is zero, the service provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or
ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

Terminating keys have to be active keys to operate.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

The following keys may effect the contents of the WFSPINDATA output parameter but are not
returned in it:

WFS_PIN_FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR
WFS_PIN_FK_BACKSPACE

The WFS_PIN_FK_CANCEL and WFS_PIN_FK_CLEAR keys will cause the output buffer to be
cleared. The WFS_PIN_FK_BACKSPACE key will cause the last key in the buffer to be
removed.

Input Param LPWFSPINGETDATA lpPinGetData;

typedef struct _wfs_pin_getdata
{
USHORT usMaxLen;
BOOL bAutoEnd;
ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
} WFSPINGETDATA, * LPWFSPINGETDATA;

usMaxLen
Specifies the maximum number of digits which can be returned to the application in the output
parameter.

bAutoEnd
If bAutoEnd is set to true, the service provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. When usMaxLen is reached, the service provider will disable all numeric
keys. bAutoEnd is ignored when usMaxLen is set to 0.

ulActiveFDKs
Specifies those FDKs which are active during the execution of the command.

ulActiveKeys
Specifies those (other) Function Keys which are active during the execution of the command.

ulTerminateFDKs
Specifies those FDKs which must terminate the execution of the command.

ulTerminateKeys
Specifies those (other) Function Keys which must terminate the execution of the command.

Page 33
CWA 14050-6:2000

Output Param LPWFSPINDATA lpPinData;

typedef struct _wfs_pin_data
{
USHORT usKeys;
LPWFSPINKEY * lpPinKeys;
WORD wCompletion;
} WFSPINDATA, * LPWFSPINDATA;

usKeys
Number of keys entered by the user (i.e. number of following WFSPINKEY structures).

lpPinKeys
Pointer to an array of pointers to WFSPINKEY structures that contain the keys entered by the
user (for a description of the WFSPINKEY structure see the definition of the
WFS_EXEE_PIN_KEY event).

wCompletion
Specifies the reason for completion of the entry. Possible values are:
(see command WFS_CMD_PIN_GET_PIN)

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYINVALID At least one of the specified function keys or

FDKs is invalid.
WFS_ERR_PIN_KEYNOTSUPPORTED At least one of the specified function keys or

FDKs is not supported by the service provider.
WFS_ERR_PIN_NOACTIVEKEYS There are no active function keys specified.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_PIN_KEY A key has been pressed at the PIN pad.

Comments If the triple zero key is pressed one WFS_EXEE_PIN_KEY event is sent that contains the
WFS_PIN_FK_000 code.

If the triple zero key is pressed when 3 keys are already inserted and usMaxLen equals 4 the key is
not accepted and no event is sent to the application.

If the backspace key is pressed after the triple zero key only one zero is deleted out of the buffer.

Double zero is handled similar to this.

5.12 WFS_CMD_PIN_INITIALIZATION

Description The encryption module must be initialized before any encryption function can be used. Every
initialization destroys all keys that have been loaded or imported. Usually this command is called
by an operator task and not by the application program.

Initialization also involves loading “initial” application keys and local vendor dependent keys.
These can be supplied, for example, by an operator through a keyboard, a local configuration file
or possibly by means of some secure hardware that can be attached to the device. The application
“initial” keys would normally get updated by the application during a
WFS_CMD_PIN_IMPORT_KEY command as soon as possible. Local vendor dependent static
keys (e.g. storage, firmware and offset keys) would normally be transparent to the application and
by definition can not be dynamically changed.

Where initial keys are not available immediately when this command is issued (i.e. when operator
intervention is required), the Service Provider returns WFS_ERR_PIN_ACCESS_DENIED and
the application must await the WFS_SRVE_PIN_INITIALIZED event.

During initialization an optional encrypted ID key can be stored in the HW module. The ID key
and the corresponding encryption key can be passed as parameters; if not, they are generated

Page 34
CWA 14050-6:2000

automatically by the encryption module. The encrypted ID is returned to the application and
serves as authorization for the key import function. The WFS_INF_PIN_CAPABILITIES
command indicates whether or not the device will support this feature.

This function also resets the HSM terminal data, except session key index and trace number.

Input Param LPWFSPININIT lpInit;

typedef struct _wfs_pin_init
{
LPWFSXDATA lpxIdent;
LPWFSXDATA lpxKey;
} WFSPININIT, * LPWFSPININIT;

lpxIdent
Pointer to the value of the ID key. Null if not required.

lpxKey
Pointer to the value of the encryption key. Null if not required.

Output Param LPWFSXDATA lpxIdentification;

lpxIdentification
Pointer to the value of the ID key encrypted by the encryption key. Can be used as authorization
for the WFS_CMD_PIN_IMPORT_KEY command, can be NULL if no authorization required.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized (or

not ready for some vendor specific reason).
WFS_ERR_PIN_INVALIDID The ID passed was not valid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_INITIALIZED The encryption module is now initialized.
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

5.13 WFS_CMD_PIN_LOCAL_BANKSYS

Description The PIN Block previously built by the WFS_CMD_PIN_GET_PINBLOCK according to the
BANKSYS specifications is combined with the ATMVAC code for local validation.

Input Param LPWFSPINLOCALBANKSYS lpLocalBanksys;

typedef struct _wfs_pin_local_banksys
{
LPWFSXDATA lpxATMVAC;
} WFSPINLOCALBANKSYS, * LPWFSPINLOCALBANKSYS;

lpxATMVAC
The ATMVAC code calculated by the BANKSYS Security Control Module.

Output Param LPBOOL lpbResult;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Page 35
CWA 14050-6:2000

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared

without building the Banksys PIN Block.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxATMVAC is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

5.14 WFS_CMD_PIN_BANKSYS_IO

Description This command sends a single command to the Banksys Security Control Module.

Input Param LPWFSPINBANKSYSIO lpBANKSYSIoIn;

typedef struct _wfs_pin_BANKSYS_io
{
ULONG ulLength;
LPBYTE lpbData;
} WFSPINBANKSYSIO, * LPWFSPINBANKSYSIO;

ulLength
Specifies the length of the following field lpbData.

lpbData
Points to the data sent to the BANKSYS Security Control Module.

Output Param LPWFSPINBANKSYSIO lpBANKSYSIoOut;

typedef struct _wfs_pin_BANKSYS_io
{
ULONG ulLength;
LPBYTE lpbData;
} WFSPINBANKSYSIO, * LPWFSPINBANKSYSIO;

ulLength
Specifies the length of the following field lpbData.

lpbData
Points to the data responded by the BANKSYS Security Control Module.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS_ERR_PIN_INVALIDDATA An error occurred while communicating with the
device.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments The Banksys command and response message data are defined in the Banksys document “SCM
DKH Manual Rel 2.x ”

Page 36
CWA 14050-6:2000

5.15 WFS_CMD_PIN_RESET

Description Sends a service reset to the service provider.

Input Param None

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a
known good condition. It does not delete any keys.

5.16 WFS_CMD_PIN_HSM_SET_TDATA

Description This function allows to set the HSM terminal data except keys, trace number and session key
index. The data must be provided as a series of “tag/length/value” items.

Input Param LPWFSXDATA lpxTData;

lpxTData
Specifies which parameter(s) is(are) to be set. lpxTData is a series of “tag/length/value” items
where each item consists of

- one byte tag (see the list of tags below),
- one byte specifying the length of the following data as an unsigned binary number
- n bytes data (see the list below for formatting)

with no separators.

The following tags are supported:

tag (hexadecimal)Format Length (in bytes) Meaning

C2 BCD 4 Terminal ID
ISO BMP 41

C3 BCD 4 Bank code
ISO BMP 42 (rightmost 4 bytes)

C4 BCD 9 Account data for terminal account
ISO BMP 60 (load against other card)

C5 BCD 9 Account data for fee account
ISO BMP 60 ("Laden vom Kartenkonto")

C6 EBCDIC 40 Terminal location
ISO BMP 43

C7 ASCII 3 Terminal currency
C8 BCD 7 Online date and time

(YYYYMMDDHHMMSS)
ISO BMP 61

C9 BCD 4 Minimum load fee
in units of 1/100 of terminal currency,
checked against leftmost 4 Bytes
of ISO BMP42,

CA BCD 4 Maximum load fee
in units of 1/100 of terminal currency,
checked against leftmost 4 Bytes
of ISO BMP42,

Output Param None.

Page 37
CWA 14050-6:2000

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

command.

Events None.

Comments None.

5.17 WFS_CMD_PIN_SECURE_MSG_SEND

Description This command handles all messages that should be send through a secure messaging to a
authorization system, German "Ladezentrale", personalisation system or the chip. The encryption
module adds the security relevant fields to the message and returns the modified message in the
output structure. All messages must be presented to the encryptor via this command even if they
do not contain security fields in order to keep track of the transaction status in the internal state
machine.

Input Param LPWFSPINSECMSG lpSecMsgIn;

typedef struct _wfs_pin_secure_message
{
WORD wProtocol;
ULONG ulLength;
LPBYTE lpbMsg;
} WFSPINSECMSG, * LPWFSPINSECMSG;

wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS ISO 8583 protocol for the authorization system
WFS_PIN_PROTISOLZ ISO 8583 protocol for the German "Ladezentrale"
WFS_PIN_PROTISOPS ISO 8583 protocol for the personalisation system
WFS_PIN_PROTCHIPZKA ZKA chip protocol
WFS_PIN_PROTRAWDATA raw data protocol

ulLength
Specifies the length in bytes of the message in lpbMsg.

lpbMsg
Specifies the message that should be send.

Output Param LPWFSPINSECMSG lpSecMsgOut;

lpSecMsgOut
pointer to a WFSPINSECMSG structure that contains the modified message that can now be
send to a authorization system, German "Ladezentrale", personalisation system or the chip.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

message.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.
WFS_ERR_PIN_CONTENTINVALID The contents of one of the security relevant fields

are invalid.

Page 38
CWA 14050-6:2000

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.18 WFS_CMD_PIN_SECURE_MSG_RECEIVE

Description This command handles all messages that are received through a secure messaging from a
authorization system, German "Ladezentrale", personalisation system or the chip. The encryption
module checks the security relevant fields. All messages must be presented to the encryptor via
this command even if they do not contain security relevant fields in order to keep track of the
transaction status in the internal state machine.

Input Param LPWFSPINSECMSG lpSecMsgIn;

typedef struct _wfs_pin_secure_message
{
WORD wProtocol;
ULONG ulLength;
LPBYTE lpbMsg;
} WFSPINSECMSG, * LPWFSPINSECMSG;

wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS ISO 8583 protocol for the authorization system
WFS_PIN_PROTISOLZ ISO 8583 protocol for the German "Ladezentrale"
WFS_PIN_PROTISOPS ISO 8583 protocol for the personalisation system
WFS_PIN_PROTCHIPZKA ZKA chip protocol
WFS_PIN_PROTRAWDATA raw data protocol

ulLength
Specifies the length in bytes of the message in lpbMsg.

lpbMsg
Specifies the message that was received. Can be NULL if during a specified time period no
response was reveived from the communication partner (necessary to set the internal state
machine to the correct state).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

message.
WFS_ERR_PIN_MACINVALID The MAC of the message is not correct.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_CONTENTINVALID The contents of one of the security relevant fields

are invalid.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

Page 39
CWA 14050-6:2000

5.19 WFS_CMD_PIN_GET_JOURNAL

Description This command is used to get journal data from the encryption module. It retrieves
cryptographically secured information about the result of the last transaction that was done with
the indicated protocol. When the service provider supports journaling (see Capabilities) then it is
impossible to do any WFS_CMD_PIN_SECURE_MSG_SEND/RECEIVE with this protocol,
unless the journal data is retrieved. It is possible - especially after restarting a system - to get the
same journal data again.

Input Param LPWORD lpwProtocol;

lpwProtocol
Specifies the protocol the journal data belong to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS Get authorization system journal data
WFS_PIN_PROTISOLZ Get German "Ladezentrale" journal data
WFS_PIN_PROTISOPS Get personalisation system journal data

Output Param LPWFSXDATA lpxJournalData;

lpxJournalData
Pointer to the journal data

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to return journal

data.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.20 WFS_CMD_PIN_IMPORT_KEY_EX

Description The key passed by the application is loaded in the encryption module. The key can be passed in
clear text mode or encrypted with an accompanying "key encryption key". The dwUse parameter
is needed to separate the keys in several parts of the encryption module to avoid the manipulation
of a key.

Input Param LPWFSPINIMPORTKEYEX lpImportKeyEx;

typedef struct _wfs_pin_import_key_ex
{
LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxValue;
LPWFSXDATA lpxControlVector;
DWORD dwUse;
WORD wKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTKEYEX, * LPWFSPINIMPORTKEYEX;

lpsKey
Specifies the name of key being loaded.

Page 40
CWA 14050-6:2000

lpsEncKey
If lpsEncKey is NULL the key is loaded directly into the encryption module. Otherwise
lpsEncKey specifies a key name which was used to encrypt the key string passed in lpxValue.

lpxValue
Specifies the value of key to be loaded. If it is an RSA key the first 4 bytes contain the exponent
and the following 128 the modulus.

lpxControlVector
Specifies the control vector of the key to be loaded. It contains the attributes of the key. If this
parameter is NULL the keys is only specified by its use.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key
is deleted. Otherwise the parameter can be one of the following flags:

Value Meaning
WFS_PIN_USECRYPT key is used for encryption and decryption
WFS_PIN_USEFUNCTION key is used for PIN block creation
WFS_PIN_USEMACING key is used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USEPINLOCAL key is used for local PIN check
WFS_PIN_USERSAPUBLIC key is used as a public key for RSA encryption
WFS_PIN_USERSAPRIVATE key is used as a private key for RSA encryption

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following
flags:

Value Meaning
WFS_PIN_KCVNONE There is no key check value verification required.
WFS_PIN_KCVSELF The key check value is created by an encryption of the

key with itself.
WFS_PIN_KCVZERO The key check value is created by an encryption of the

key with a zero value.

lpxKeyCheckValue
Specifies a check value to verify that the value of the imported key is correct. It can be NULL,
if no key check value verification is required and wKeyCheckMode equals
WFS_PIN_KCVNONE.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use conflicts with a previously for

the same key specified one.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_KEYINVALID The key value is invalid. The key check value

verification failed.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key

of the specified type.

Page 41
CWA 14050-6:2000

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

5.21 WFS_CMD_PIN_ENC_IO

Description This command is used to communicate with the encryption module. Transparent data is sent from
the application to the encryption module and the response is returned transparently to the
application.

Input Param LPWFSPINENCIO lpEncIoIn;

typedef struct _wfs_pin_enc_io
{
WORD wProtocol;
ULONG ulDataLength;
LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Identifies the protocol that is used to communicate with the encryption module.
The following protocol numbers are defined:

Value Meaning
WFS_PIN_ENC_PROT_CH For Swiss specific protocols.

The document specification for Swiss specific
protocols is "CMD_ENC_IO - CH Protocol.doc".
This document is available at the following
address:
EUROPAY (Switzerland) SA
Terminal Management
Hertistrasse 27
CH-8304 Wallisellen

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to a structure containing the data to be sent to the encryption module.

Output Param LPWFSPINENCIO lpEncIoOut;

typedef struct _wfs_pin_enc_io
{
WORD wProtocol;
ULONG ulDataLength;
LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Identifies the protocol that is used to communicate with the encryption module. This field contains
the same value as the corresponding field in the input structure.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to a structure containing the data responded by the encryption module.

Page 42
CWA 14050-6:2000

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_PROTOCOLNOTSUPP The specified protocol is not supported by the

service provider.

Events None.

Comments None.

Page 43
CWA 14050-6:2000

6. Events

6.1 WFS_EXEE_PIN_KEY

Description This event specifies that any active key has been pressed at the PIN pad. It is used if the device
has no internal display unit and the application has to manage the display of the entered digits.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

Event Param LPWFSPINKEY lpKey;

typedef struct _wfs_pin_key
{
WORD wCompletion;
ULONG ulDigit;
} WFSPINKEY, * LPWFSPINKEY;

wCompletion
Specifies the reason for completion or continuation of the entry. Possible values are:
(see command WFS_CMD_PIN_GET_PIN)

ulDigit
Specifies the digit entered by the user. When working in encryption mode
(WFS_CMD_PIN_GET_PIN), the value of this field is zero. For each key pressed, the
corresponding FK or FDK mask value is stored in this field.

Comments None.

6.2 WFS_SRVE_PIN_INITIALIZED

Description This event specifies that, as a result of a WFS_CMD_PIN_INITIALIZATION, the encryption
module is now initialized and the master key (where required) and any other initial keys are
loaded; ready to import other keys.

Event Param LPWFSPININIT lpInit;

lpInit
For a definition of WFSPININIT see command WFS_CMD_PIN_INITIALIZATION.

Comments None.

6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS

Description This event specifies that an error occurred accessing an encryption key. Possible situations for
generating this event are the encryption key was not found, had no value, or a use violation.

Event Param LPWFSPINACCESS lpAccess;

typedef struct _wfs_pin_access
{
LPSTR lpsKeyName;
LONG lErrorCode;
} WFSPINACCESS, * LPWFSPINACCESS;

lpsKeyName
Specifies the name of the key that caused the error.

Page 44
CWA 14050-6:2000

lErrorCode
Specifies the type of illegal key access that occurred. Possible values are:
Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not loaded.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.

Comments None.

6.4 WFS_SRVE_PIN_OPT_REQUIRED

Description This event indicates that the online date/time stored in a HSM has been reached.

Event Param None.

Comments This event may be triggered by the clock reaching a previously stored online time or by the online
time being set to a time that lies in the past.

The online time may be set by the command WFS_CMD_PIN_HSM_SET_TDATA or by a
command WFS_CMD_PIN_SECURE_MSG_RECEIVE that contains a message from a host
system containing a new online date/time.

The event does not mean that any keys or other data in the HSM is out of date now. It just
indicates that the terminal should communicate with a "Personalisierungsstelle" as soon as
possible using the commands WFS_CMD_PIN_SECURE_MSG_SEND / _RECEIVE and
wProtocol=WFS_PIN_PROTISOPS.

Page 45
CWA 14050-6:2000

7. C - Header File

/**
* *
*xfspin.h XFS - Personal Identification Number Keypad (PIN) definitions *
* *
* Version 3.00 (10/18/00) *
* *
**/

#ifndef __INC_XFSPIN__H
#define __INC_XFSPIN__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSPINCAPS.wClass */

#define WFS_SERVICE_CLASS_PIN (4)
#define WFS_SERVICE_CLASS_VERSION_PIN (0x0003) /* Version 3.00 */
#define WFS_SERVICE_CLASS_NAME_PIN "PIN"

#define PIN_SERVICE_OFFSET (WFS_SERVICE_CLASS_PIN * 100)

/* PIN Info Commands */

#define WFS_INF_PIN_STATUS (PIN_SERVICE_OFFSET + 1)
#define WFS_INF_PIN_CAPABILITIES (PIN_SERVICE_OFFSET + 2)
#define WFS_INF_PIN_KEY_DETAIL (PIN_SERVICE_OFFSET + 4)
#define WFS_INF_PIN_FUNCKEY_DETAIL (PIN_SERVICE_OFFSET + 5)
#define WFS_INF_PIN_HSM_TDATA (PIN_SERVICE_OFFSET + 6)
#define WFS_INF_PIN_KEY_DETAIL_EX (PIN_SERVICE_OFFSET + 7)

/* PIN Command Verbs */

#define WFS_CMD_PIN_CRYPT (PIN_SERVICE_OFFSET + 1)
#define WFS_CMD_PIN_IMPORT_KEY (PIN_SERVICE_OFFSET + 3)
#define WFS_CMD_PIN_GET_PIN (PIN_SERVICE_OFFSET + 5)
#define WFS_CMD_PIN_GET_PINBLOCK (PIN_SERVICE_OFFSET + 7)
#define WFS_CMD_PIN_GET_DATA (PIN_SERVICE_OFFSET + 8)
#define WFS_CMD_PIN_INITIALIZATION (PIN_SERVICE_OFFSET + 9)
#define WFS_CMD_PIN_LOCAL_DES (PIN_SERVICE_OFFSET + 10)
#define WFS_CMD_PIN_LOCAL_EUROCHEQUE (PIN_SERVICE_OFFSET + 11)
#define WFS_CMD_PIN_LOCAL_VISA (PIN_SERVICE_OFFSET + 12)
#define WFS_CMD_PIN_CREATE_OFFSET (PIN_SERVICE_OFFSET + 13)
#define WFS_CMD_PIN_DERIVE_KEY (PIN_SERVICE_OFFSET + 14)
#define WFS_CMD_PIN_PRESENT_IDC (PIN_SERVICE_OFFSET + 15)
#define WFS_CMD_PIN_LOCAL_BANKSYS (PIN_SERVICE_OFFSET + 16)
#define WFS_CMD_PIN_BANKSYS_IO (PIN_SERVICE_OFFSET + 17)
#define WFS_CMD_PIN_RESET (PIN_SERVICE_OFFSET + 18)
#define WFS_CMD_PIN_HSM_SET_TDATA (PIN_SERVICE_OFFSET + 19)
#define WFS_CMD_PIN_SECURE_MSG_SEND (PIN_SERVICE_OFFSET + 20)
#define WFS_CMD_PIN_SECURE_MSG_RECEIVE (PIN_SERVICE_OFFSET + 21)
#define WFS_CMD_PIN_GET_JOURNAL (PIN_SERVICE_OFFSET + 22)
#define WFS_CMD_PIN_IMPORT_KEY_EX (PIN_SERVICE_OFFSET + 23)
#define WFS_CMD_PIN_ENC_IO (PIN_SERVICE_OFFSET + 24)

/* PIN Messages */

#define WFS_EXEE_PIN_KEY (PIN_SERVICE_OFFSET + 1)
#define WFS_SRVE_PIN_INITIALIZED (PIN_SERVICE_OFFSET + 2)
#define WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS (PIN_SERVICE_OFFSET + 3)
#define WFS_SRVE_PIN_OPT_REQUIRED (PIN_SERVICE_OFFSET + 4)

/* values of WFSPINSTATUS.fwDevice */

Page 46
CWA 14050-6:2000

#define WFS_PIN_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_PIN_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_PIN_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_PIN_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_PIN_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_PIN_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_PIN_DEVBUSY WFS_STAT_DEVBUSY

/* values of WFSPINSTATUS.fwEncStat */

#define WFS_PIN_ENCREADY (0)
#define WFS_PIN_ENCNOTREADY (1)
#define WFS_PIN_ENCNOTINITIALIZED (2)
#define WFS_PIN_ENCBUSY (3)
#define WFS_PIN_ENCUNDEFINED (4)
#define WFS_PIN_ENCINITIALIZED (5)

/* values of WFSPINCAPS.wType */

#define WFS_PIN_TYPEEPP (0x0001)
#define WFS_PIN_TYPEEDM (0x0002)
#define WFS_PIN_TYPEHSM (0x0004)

/* values of WFSPINCAPS.fwAlgorithms, WFSPINCRYPT.wAlgorithm */

#define WFS_PIN_CRYPTDESECB (0x0001)
#define WFS_PIN_CRYPTDESCBC (0x0002)
#define WFS_PIN_CRYPTDESCFB (0x0004)
#define WFS_PIN_CRYPTRSA (0x0008)
#define WFS_PIN_CRYPTECMA (0x0010)
#define WFS_PIN_CRYPTDESMAC (0x0020)
#define WFS_PIN_CRYPTTRIDESECB (0x0040)
#define WFS_PIN_CRYPTTRIDESCBC (0x0080)
#define WFS_PIN_CRYPTTRIDESCFB (0x0100)
#define WFS_PIN_CRYPTTRIDESMAC (0x0200)

/* values of WFSPINCAPS.fwPinFormats */

#define WFS_PIN_FORM3624 (0x0001)
#define WFS_PIN_FORMANSI (0x0002)
#define WFS_PIN_FORMISO0 (0x0004)
#define WFS_PIN_FORMISO1 (0x0008)
#define WFS_PIN_FORMECI2 (0x0010)
#define WFS_PIN_FORMECI3 (0x0020)
#define WFS_PIN_FORMVISA (0x0040)
#define WFS_PIN_FORMDIEBOLD (0x0080)
#define WFS_PIN_FORMDIEBOLDCO (0x0100)
#define WFS_PIN_FORMVISA3 (0x0200)
#define WFS_PIN_FORMBANKSYS (0x0400)

/* values of WFSPINCAPS.fwDerivationAlgorithms */

#define WFS_PIN_CHIP_ZKA (0x0001)

/* values of WFSPINCAPS.fwPresentationAlgorithms */

#define WFS_PIN_PRESENT_CLEAR (0x0001)

/* values of WFSPINCAPS.fwDisplay */

#define WFS_PIN_DISPNONE (1)
#define WFS_PIN_DISPLEDTHROUGH (2)
#define WFS_PIN_DISPDISPLAY (3)

/* values of WFSPINCAPS.fwIDKey */

#define WFS_PIN_IDKEYINITIALIZATION (0x0001)
#define WFS_PIN_IDKEYIMPORT (0x0002)

/* values of WFSPINCAPS.fwValidationAlgorithms */

#define WFS_PIN_DES (0x0001)
#define WFS_PIN_EUROCHEQUE (0x0002)

Page 47
CWA 14050-6:2000

#define WFS_PIN_VISA (0x0004)
#define WFS_PIN_DES_OFFSET (0x0008)
#define WFS_PIN_BANKSYS (0x0010)

/* values of WFSPINCAPS.fwKeyCheckModes and
 WFSPINIMPORTKEYEX.wKeyCheckMode */

#define WFS_PIN_KCVNONE (0x0000)
#define WFS_PIN_KCVSELF (0x0001)
#define WFS_PIN_KCVZERO (0x0002)

/* values of WFSPINKEYDETAIL.fwUse */

#define WFS_PIN_USECRYPT (0x0001)
#define WFS_PIN_USEFUNCTION (0x0002)
#define WFS_PIN_USEMACING (0x0004)
#define WFS_PIN_USEKEYENCKEY (0x0020)
#define WFS_PIN_USENODUPLICATE (0x0040)
#define WFS_PIN_USESVENCKEY (0x0080)
#define WFS_PIN_USEPINLOCAL (0x10000)
#define WFS_PIN_USERSAPUBLIC (0x20000)
#define WFS_PIN_USERSAPRIVATE (0x40000)
#define WFS_PIN_USECHIPINFO (0x100000)
#define WFS_PIN_USECHIPPIN (0x200000)
#define WFS_PIN_USECHIPPS (0x400000)
#define WFS_PIN_USECHIPMAC (0x800000)
#define WFS_PIN_USECHIPLT (0x1000000)
#define WFS_PIN_USECHIPMACLZ (0x2000000)
#define WFS_PIN_USECHIPMACAZ (0x4000000)

/* values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS_PIN_FK_0 (0x00000001)
#define WFS_PIN_FK_1 (0x00000002)
#define WFS_PIN_FK_2 (0x00000004)
#define WFS_PIN_FK_3 (0x00000008)
#define WFS_PIN_FK_4 (0x00000010)
#define WFS_PIN_FK_5 (0x00000020)
#define WFS_PIN_FK_6 (0x00000040)
#define WFS_PIN_FK_7 (0x00000080)
#define WFS_PIN_FK_8 (0x00000100)
#define WFS_PIN_FK_9 (0x00000200)
#define WFS_PIN_FK_ENTER (0x00000400)
#define WFS_PIN_FK_CANCEL (0x00000800)
#define WFS_PIN_FK_CLEAR (0x00001000)
#define WFS_PIN_FK_BACKSPACE (0x00002000)
#define WFS_PIN_FK_HELP (0x00004000)
#define WFS_PIN_FK_DECPOINT (0x00008000)
#define WFS_PIN_FK_00 (0x00010000)
#define WFS_PIN_FK_000 (0x00020000)
#define WFS_PIN_FK_RES1 (0x00040000)
#define WFS_PIN_FK_RES2 (0x00080000)
#define WFS_PIN_FK_RES3 (0x00100000)
#define WFS_PIN_FK_RES4 (0x00200000)
#define WFS_PIN_FK_RES5 (0x00400000)
#define WFS_PIN_FK_RES6 (0x00800000)
#define WFS_PIN_FK_RES7 (0x01000000)
#define WFS_PIN_FK_RES8 (0x02000000)
#define WFS_PIN_FK_OEM1 (0x04000000)
#define WFS_PIN_FK_OEM2 (0x08000000)
#define WFS_PIN_FK_OEM3 (0x10000000)
#define WFS_PIN_FK_OEM4 (0x20000000)
#define WFS_PIN_FK_OEM5 (0x40000000)
#define WFS_PIN_FK_OEM6 (0x80000000)

/* values of WFSPINFUNCKEY.ulFDK */

#define WFS_PIN_FK_FDK01 (0x00000001)
#define WFS_PIN_FK_FDK02 (0x00000002)
#define WFS_PIN_FK_FDK03 (0x00000004)
#define WFS_PIN_FK_FDK04 (0x00000008)
#define WFS_PIN_FK_FDK05 (0x00000010)
#define WFS_PIN_FK_FDK06 (0x00000020)
#define WFS_PIN_FK_FDK07 (0x00000040)

Page 48
CWA 14050-6:2000

#define WFS_PIN_FK_FDK08 (0x00000080)
#define WFS_PIN_FK_FDK09 (0x00000100)
#define WFS_PIN_FK_FDK10 (0x00000200)
#define WFS_PIN_FK_FDK11 (0x00000400)
#define WFS_PIN_FK_FDK12 (0x00000800)
#define WFS_PIN_FK_FDK13 (0x00001000)
#define WFS_PIN_FK_FDK14 (0x00002000)
#define WFS_PIN_FK_FDK15 (0x00004000)
#define WFS_PIN_FK_FDK16 (0x00008000)
#define WFS_PIN_FK_FDK17 (0x00010000)
#define WFS_PIN_FK_FDK18 (0x00020000)
#define WFS_PIN_FK_FDK19 (0x00040000)
#define WFS_PIN_FK_FDK20 (0x00080000)
#define WFS_PIN_FK_FDK21 (0x00100000)
#define WFS_PIN_FK_FDK22 (0x00200000)
#define WFS_PIN_FK_FDK23 (0x00400000)
#define WFS_PIN_FK_FDK24 (0x00800000)
#define WFS_PIN_FK_FDK25 (0x01000000)
#define WFS_PIN_FK_FDK26 (0x02000000)
#define WFS_PIN_FK_FDK27 (0x04000000)
#define WFS_PIN_FK_FDK28 (0x08000000)
#define WFS_PIN_FK_FDK29 (0x10000000)
#define WFS_PIN_FK_FDK30 (0x20000000)
#define WFS_PIN_FK_FDK31 (0x40000000)
#define WFS_PIN_FK_FDK32 (0x80000000)

/* values of WFSPINCRYPT.wMode */

#define WFS_PIN_MODEENCRYPT (1)
#define WFS_PIN_MODEDECRYPT (2)
#define WFS_PIN_MODERANDOM (3)

/* values of WFSPINENTRY.wCompletion */

#define WFS_PIN_COMPAUTO (0)
#define WFS_PIN_COMPENTER (1)
#define WFS_PIN_COMPCANCEL (2)
#define WFS_PIN_COMPCONTINUE (6)
#define WFS_PIN_COMPCLEAR (7)
#define WFS_PIN_COMPBACKSPACE (8)
#define WFS_PIN_COMPFDK (9)
#define WFS_PIN_COMPHELP (10)
#define WFS_PIN_COMPFK (11)
#define WFS_PIN_COMPCONTFDK (12)

/* values of WFSPINSECMSG.wProtocol */
#define WFS_PIN_PROTISOAS (1)
#define WFS_PIN_PROTISOLZ (2)
#define WFS_PIN_PROTISOPS (3)
#define WFS_PIN_PROTCHIPZKA (4)
#define WFS_PIN_PROTRAWDATA (5)

/* values of WFSPINENCIO.wProtocol */
#define WFS_PIN_ENC_PROT_CH (1)

/* XFS PIN Errors */

#define WFS_ERR_PIN_KEYNOTFOUND (-(PIN_SERVICE_OFFSET + 0))
#define WFS_ERR_PIN_MODENOTSUPPORTED (-(PIN_SERVICE_OFFSET + 1))
#define WFS_ERR_PIN_ACCESSDENIED (-(PIN_SERVICE_OFFSET + 2))
#define WFS_ERR_PIN_INVALIDID (-(PIN_SERVICE_OFFSET + 3))
#define WFS_ERR_PIN_DUPLICATEKEY (-(PIN_SERVICE_OFFSET + 4))
#define WFS_ERR_PIN_KEYNOVALUE (-(PIN_SERVICE_OFFSET + 6))
#define WFS_ERR_PIN_USEVIOLATION (-(PIN_SERVICE_OFFSET + 7))
#define WFS_ERR_PIN_NOPIN (-(PIN_SERVICE_OFFSET + 8))
#define WFS_ERR_PIN_INVALIDKEYLENGTH (-(PIN_SERVICE_OFFSET + 9))
#define WFS_ERR_PIN_KEYINVALID (-(PIN_SERVICE_OFFSET + 10))
#define WFS_ERR_PIN_KEYNOTSUPPORTED (-(PIN_SERVICE_OFFSET + 11))
#define WFS_ERR_PIN_NOACTIVEKEYS (-(PIN_SERVICE_OFFSET + 12))
#define WFS_ERR_PIN_NOTERMINATEKEYS (-(PIN_SERVICE_OFFSET + 14))
#define WFS_ERR_PIN_MINIMUMLENGTH (-(PIN_SERVICE_OFFSET + 15))
#define WFS_ERR_PIN_PROTOCOLNOTSUPP (-(PIN_SERVICE_OFFSET + 16))
#define WFS_ERR_PIN_INVALIDDATA (-(PIN_SERVICE_OFFSET + 17))

Page 49
CWA 14050-6:2000

#define WFS_ERR_PIN_NOTALLOWED (-(PIN_SERVICE_OFFSET + 18))
#define WFS_ERR_PIN_NOKEYRAM (-(PIN_SERVICE_OFFSET + 19))
#define WFS_ERR_PIN_NOCHIPTRANSACTIVE (-(PIN_SERVICE_OFFSET + 20))
#define WFS_ERR_PIN_ALGORITHMNOTSUPP (-(PIN_SERVICE_OFFSET + 21))
#define WFS_ERR_PIN_FORMATNOTSUPP (-(PIN_SERVICE_OFFSET + 22))
#define WFS_ERR_PIN_HSMSTATEINVALID (-(PIN_SERVICE_OFFSET + 23))
#define WFS_ERR_PIN_MACINVALID (-(PIN_SERVICE_OFFSET + 24))
#define WFS_ERR_PIN_PROTINVALID (-(PIN_SERVICE_OFFSET + 25))
#define WFS_ERR_PIN_FORMATINVALID (-(PIN_SERVICE_OFFSET + 26))
#define WFS_ERR_PIN_CONTENTINVALID (-(PIN_SERVICE_OFFSET + 27))

/*===*/
/* PIN Info Command Structures and variables */
/*===*/

typedef struct _wfs_pin_status
{
 WORD fwDevice;
 WORD fwEncStat;
 LPSTR lpszExtra;
} WFSPINSTATUS, * LPWFSPINSTATUS;

typedef struct _wfs_pin_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 USHORT usKeyNum;
 WORD fwAlgorithms;
 WORD fwPinFormats;
 WORD fwDerivationAlgorithms;
 WORD fwPresentationAlgorithms;
 WORD fwDisplay;
 BOOL bIDConnect;
 WORD fwIDKey;
 WORD fwValidationAlgorithms;
 WORD fwKeyCheckModes;
 LPSTR lpszExtra;
} WFSPINCAPS, * LPWFSPINCAPS;

typedef struct _wfs_pin_key_detail
{
 LPSTR lpsKeyName;
 WORD fwUse;
 BOOL bLoaded;
} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

typedef struct _wfs_pin_fdk
{
 ULONG ulFDK;
 USHORT usXPosition;
 USHORT usYPosition;
} WFSPINFDK, * LPWFSPINFDK;

typedef struct _wfs_pin_func_key_detail
{
 ULONG ulFuncMask;
 USHORT usNumberFDKs;
 LPWFSPINFDK * lppFDKs;
} WFSPINFUNCKEYDETAIL, * LPWFSPINFUNCKEYDETAIL;

typedef struct _wfs_pin_key_detail_ex
{
 LPSTR lpsKeyName;
 DWORD dwUse;
 BYTE bGeneration;
 BYTE bVersion;
 BYTE bActivatingDate[4];
 BYTE bExpiryDate[4];
 BOOL bLoaded;
} WFSPINKEYDETAILEX, * LPWFSPINKEYDETAILEX;

/*===*/

Page 50
CWA 14050-6:2000

/* PIN Execute Command Structures */
/*===*/

typedef struct _wfs_hex_data
{
 USHORT usLength;
 LPBYTE lpbData;
} WFSXDATA, * LPWFSXDATA;

typedef struct _wfs_pin_crypt
{
 WORD wMode;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 WORD wAlgorithm;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 BYTE bCompression;
 LPWFSXDATA lpxCryptData;
} WFSPINCRYPT, * LPWFSPINCRYPT;

typedef struct _wfs_pin_import
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxValue;
 WORD fwUse;
} WFSPINIMPORT, * LPWFSPINIMPORT;

typedef struct _wfs_pin_derive
{
 WORD wDerivationAlgorithm;
 LPSTR lpsKey;
 LPSTR lpsKeyGenKey;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 LPWFSXDATA lpxInputData;
 LPWFSXDATA lpxIdent;
 } WFSPINDERIVE, * LPWFSPINDERIVE;

typedef struct _wfs_pin_getpin
{
 USHORT usMinLen;
 USHORT usMaxLen;
 BOOL bAutoEnd;
 CHAR cEcho;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETPIN, * LPWFSPINGETPIN;

typedef struct _wfs_pin_entry
{
 USHORT usDigits;
 WORD wCompletion;
} WFSPINENTRY, * LPWFSPINENTRY;

typedef struct _wfs_pin_local_des
{
 LPSTR lpsValidationData;
 LPSTR lpsOffset;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 BOOL bNoLeadingZero;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALDES, * LPWFSPINLOCALDES;

Page 51
CWA 14050-6:2000

typedef struct _wfs_pin_create_offset
{
 LPSTR lpsValidationData;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINCREATEOFFSET, * LPWFSPINCREATEOFFSET;

typedef struct _wfs_pin_local_eurocheque
{
 LPSTR lpsEurochequeData;
 LPSTR lpsPVV;
 WORD wFirstEncDigits;
 WORD wFirstEncOffset;
 WORD wPVVDigits;
 WORD wPVVOffset;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALEUROCHEQUE, * LPWFSPINLOCALEUROCHEQUE;

typedef struct _wfs_pin_local_visa
{
 LPSTR lpsPAN;
 LPSTR lpsPVV;
 WORD wPVVDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
} WFSPINLOCALVISA, * LPWFSPINLOCALVISA;

typedef struct _wfs_pin_presentidc
{
 WORD wPresentAlgorithm;
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 LPVOID lpAlgorithmData;
} WFSPINPRESENTIDC, * LPWFSPINPRESENTIDC;

typedef struct _wfs_pin_present_result
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSPINPRESENTRESULT, * LPWFSPINPRESENTRESULT;

typedef struct _wfs_pin_presentclear
{
 ULONG ulPINPointer;
 USHORT usPINOffset;
} WFSPINPRESENTCLEAR, * LPWFSPINPRESENTCLEAR;

typedef struct _wfs_pin_block
{
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 WORD wFormat;
 LPSTR lpsKey;
 LPSTR lpsKeyEncKey;
} WFSPINBLOCK, * LPWFSPINBLOCK;

typedef struct _wfs_pin_getdata
{
 USHORT usMaxLen;
 BOOL bAutoEnd;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETDATA, * LPWFSPINGETDATA;

Page 52
CWA 14050-6:2000

typedef struct _wfs_pin_key
{
 WORD wCompletion;
 ULONG ulDigit;
} WFSPINKEY, * LPWFSPINKEY;

typedef struct _wfs_pin_data
{
 USHORT usKeys;
 LPWFSPINKEY *lpPinKeys;
 WORD wCompletion;
} WFSPINDATA, * LPWFSPINDATA;

typedef struct _wfs_pin_init
{
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxKey;
} WFSPININIT, * LPWFSPININIT;

typedef struct _wfs_pin_local_banksys
{
 LPWFSXDATA lpxATMVAC;
} WFSPINLOCALBANKSYS, * LPWFSPINLOCALBANKSYS;

typedef struct _wfs_pin_banksys_io
{
 ULONG ulLength;
 LPBYTE lpbData;
} WFSPINBANKSYSIO, * LPWFSPINBANKSYSIO;

typedef struct _wfs_pin_secure_message
 {
 WORD wProtocol;
 ULONG ulLength;
 LPBYTE lpbMsg;
} WFSPINSECMSG, * LPWFSPINSECMSG;

typedef struct _wfs_pin_import_key_ex
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxControlVector;
 DWORD dwUse;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTKEYEX, * LPWFSPINIMPORTKEYEX;

typedef struct _wfs_pin_enc_io
{
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;

/*===*/
/* PIN Message Structures */
/*===*/

typedef struct _wfs_pin_access
{
 LPSTR lpsKeyName;
 LONG lErrorCode;
} WFSPINACCESS, * LPWFSPINACCESS;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

Page 53
CWA 14050-6:2000

#endif /* __INC_XFSPIN__H */

Page 54
CWA 14050-6:2000

8. German ZKA GeldKarte

The PIN service is able to handle the German "Geldkarte", which is an electronic purse specified by the ZKA
(Zentraler Kreditausschuß).

For anyone attempting to write an application that handles these chip cards, it is essential to read and understand the
specifications published by

Bank-Verlag, Köln
Postfach 30 01 91
D-50771 Köln

Phone: +49 221 5490-0

Fax: +49 221 5490-120

8.1 How to use the SECURE_MSG commands

This is to describe how an application should use the WFS_CMD_PIN_SECURE_MSG_SEND and
WFS_CMD_PIN_SECURE_MSG_RECEIVE commands for transactions involving chipcards with a German ZKA
GeldKarte chip.
� Applications must call SECURE_MSG_SEND for every command they send to the chip or to a host system,

including those commands that do not actually require secure messaging. This enables the service provider to
remember security-relevant data that may be needed or checked later in the transaction.

� Applications must pass a complete message as input to SECURE_MSG_SEND, with all fields - including those
that will be filled by the service provider - being present in the correct length. All fields that are not filled by the
service provider must be filled with the ultimate values in order to enable MACing by the service provider.

� Every command SECURE_MSG_SEND that an application issues must be followed by exactly one command
SECURE_MSG_RECEIVE that informs the service provider about the response from the chip or host. If no
response is received (timeout or communication failure) the application must issue a
SECURE_MSG_RECEIVE command with lpSecMsgIn->lpbMsg = NULL to inform the service provider
about this fact.

� If a system is restarted after a SECURE_MSG_SEND was issued to the service provider but before the
SECURE_MSG_RECEIVE was issued, the restart has the same effect as a SECURE_MSG_RECEIVE
command with lpSecMsgIn->lpbMsg = NULL .

� Between a SECURE_MSG_SEND and the corresponding SECURE_MSG_RECEIVE no
SECURE_MSG_SEND with the same lpSecMsgIn->wProtocol must be issued. Other
WFS_CMD_PIN... commands – including SECURE_MSG_SEND / RECEIVE with different wProtocol –
may be used.

8.2 Protocol WFS_PIN_PROTISOAS

This protocol handles ISO8583 messages between an ATM and an authorization system (AS).

Only messages in the new ISO format, with new PAC/MAC-format using session keys and Triple-DES are
supported.

Authorization messages may be used to dispense the amount authorized in cash or to load the amount into an
electronic purse (GeldKarte).

For loading a GeldKarte the only type of authorization supported is a transaction originating from track 3 of a
German ec-card (message types 0200/0210 for authorization and 0400/0410 for reversal)

For dispensing cash, transactions originating from international cards (message types 0100/0110 and 0400/0410) are
supported as well.

The following bitmap positions are filled by the service provider:
� BMP11 Trace-Nummer
� BMP52 PAC
� BMP57 Verschlüsselungsparameter (only the challenge values RNDMES and RNDPAC)
� BMP64 MAC

Page 55
CWA 14050-6:2000

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the service provider and have to be filled by the application:
� Nachrichtentyp
� BMP3 Abwicklungskennzeichen (only for GeldKarte, not for cash)
� BMP4 Transaktionsbetrag (only for GeldKarte, not for cash)
� BMP41 Terminal-ID
� BMP42 Betreiber-BLZ

For a documentation of authorization messages see:

Regelwerk für das deutsche ec-Geldautomaten-System
Stand: 22. Nov. 1999

Bank-Verlag, Köln
Autorisierungszentrale GA/POS der privaten Banken
Spezifikation für GA-Betreiber
Version 3.12
31. Mai 2000

dvg Hannover
Schnittstellenbeschreibung für Autorisierungsanfragen bei nationalen GA-Verfügungen unter Verwendung
der Spur 3
Version 2.5
Stand: 15.03.2000

dvg Hannover
Schnittstellenbeschreibung für Autorisierungsanfragen bei internationalen Verfügungen unter Verwendung
der Spur 2
Version 2.6
Stand: 30.03.2000

8.3 Protocol WFS_PIN_PROTISOLZ

This protocol handles ISO8583 messages between a „Ladeterminal" and a „Ladezentrale" (LZ).

Only messages in the new ISO format, with new MAC-format using session keys and Triple-DES are supported.

Both types of GeldKarte chip (type 0 = DEM, type 1 = EUR) are supported.

The following bitmap positions are filled by the service provider:
� BMP11: Trace-Nummer
� BMP57: Verschlüsselungsparameter (only the challenge value RNDMES)
� BMP64: MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the service provider and have to be filled by the application:
� Nachrichtentyp
� BMP3: Abwicklungskennzeichen
� BMP4: Transaktionsbetrag
� BMP12: Uhrzeit
� BMP13: Datum
� BMP25: Konditionscode
� BMP41: Terminal-ID
� BMP42: Betreiber-BLZ (caution: "Ladeentgelt" also in BMP42 is not set by the EPP)
� BMP61: Online-Zeitpunkt
� BMP62: Chipdaten

Page 56
CWA 14050-6:2000

The following bitmap positions are only checked if they are available:
� BMP43: Standort
� BMP60: Kontodaten Ladeterminal

For a documentation of the Ladezentrale interface see:
ZKA / Bank-Verlag, Köln
Schnittstellenspezifikation für die ec-Karte mit Chip
Geldkarte Ladeterminals
Version 3.0
2. 4. 1998

8.4 Protocol WFS_PIN_PROTISOPS

This protocol handles ISO8583 messages between a terminal and a "Personalisierungsstelle" (PS). These messages
are about OPT.

The service provider creates the whole message with WFS_CMD_PIN_SECURE_MSG_SEND, including message
type and bitmap.

For a documentation of the Personalisierungsstelle interface see:
ZKA / Bank-Verlag, Köln
Schnittstellenspezifikation für die ec-Karte mit Chip
Online-Personalisierung von Terminal-HSMs
Version 3.0
2. 4. 1998

8.5 Protocol WFS_PIN_PROTCHIPZKA

This protocol is intended to handle messages between the application and a GeldKarte.

Both types of GeldKarte are supported.

Both types of load transactions ("Laden vom Kartenkonto" and "Laden gegen andere Zahlungsmittel") are
supported.

See the chapter "Command Sequence" below for the actions that service providers take for the various chip card
commands.

Only the command APDUs to and the response APDUs from the chip must be passed to the service provider, the
ATR (answer to reset) data from the chip is not passed to the service provider.

For a documentation of the chip commands used to load a GeldKarte see:
ZKA / Bank-Verlag, Köln
Schnittstellenspezifikation für die ec-Karte mit Chip
Ladeterminals
Version 3.0
2. 4. 1998

8.6 Protocol WFS_PIN_PROTRAWDATA

This protocol is intended for vendor-specific purposes. Generally the use of this protocol is not recommended and
should be restricted to issues that are impossible to handle otherwise.

For example a HSM that requires vendor-specific, cryptographically secured data formats for importing keys or
terminal data may use this protocol.

Applicaton programmers should be aware that the use of this command may prevent their applications from running
on different hardware.

Page 57
CWA 14050-6:2000

8.7 Command Sequence

The following list shows the sequence of actions an application has to take for the various GeldKarte Transactions.
Please note that this is a summary and is just intended to clarify the purpose of the chipcard-related
WFS_CMD_PIN_... commands. In no way it can replace the ZKA specifications mentioned above.

Command
WFS_CMD_PIN_...

wProtocol
WFS_PIN_P
ROT...

lpbMsg Service Provider´s actions

Preparation for
Load/Unload

SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BÖRSE

SECURE_MSG_RECEIVE CHIPZKA Response APDU recognize type of chip
SECURE_MSG_SEND CHIPZKA Command APDU

READ RECORD EF_ID
SECURE_MSG_RECEIVE CHIPZKA record EF_ID store EF_ID
SECURE_MSG_SEND CHIPZKA Command APDU

READ RECORD EF_LLOG
SECURE_MSG_RECEIVE CHIPZKA record EF_LLOG
SECURE_MSG_SEND CHIPZKA Command APDU

READ_RECORD EF_BÖRSE
SECURE_MSG_RECEIVE CHIPZKA record EF_BÖRSE
SECURE_MSG_SEND CHIPZKA Command APDU

READ_RECORD
EF_BETRAG

SECURE_MSG_RECEIVE CHIPZKA record EF_BETRAG

Load against other ec-Card

SECURE_MSG_SEND CHIPZKA for type 0 chips only
Command APDU
READ RECORD EF_KEYD

SECURE_MSG_RECEIVE CHIPZKA record EF_KEYD
SECURE_MSG_SEND CHIPZKA for type 1 chips only

Command APDU
GET KEYINFO

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU

GET CHALLENGE
SECURE_MSG_RECEIVE CHIPZKA Random number RND1 from

Chip
store RND1

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN EINLEITEN
with Secure Msg.

fill
-Terminal ID
-Traceno.
-RND2
-MAC

SECURE_MSG_RECEIVE CHIPZKA Response APDU store response APDU for later check of
ISOLZ message, BMP 62

SECURE_MSG_SEND ISOAZ ISO8583 message 0200
Authorization Request

fill
- Traceno. (BMP 11)
- PAC (BMP 52)
- RNDMES + RNDPAC (BMP 57)
- MAC (BMP 64)

check other security relevant fields
SECURE_MSG_RECEIVE ISOAZ ISO8583 message 0210

Authorization Response
check MAC and other security relevant
fields

SECURE_MSG_SEND ISOLZ ISO8583 message 0200
Ladeanfrage

fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)

check other security relevant fields.

Page 58
CWA 14050-6:2000

Command
WFS_CMD_PIN_...

wProtocol
WFS_PIN_P
ROT...

lpbMsg Service Provider´s actions

SECURE_MSG_RECEIVE ISOLZ ISO8583 message 0210
Ladeantwort

check MAC and other security relevant
fields, store BMP62 for later use in
LADEN command.

SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND3 from
chip

store RND3

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN with Secure Msg.

provide complete command from
BMP62 of ISOLZ response , compute
command MAC

SECURE_MSG_RECEIVE CHIPZKA Response APDU check response MAC
GET_JOURNAL ISOLZ Vendor specific
GET_JOURNAL ISOAZ Vendor specific

Reversal of a Load against
other ec-Card

SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BÖRSE

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU

GET CHALLENGE
SECURE_MSG_RECEIVE CHIPZKA Random number RND5 from

chip
store RND5

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN EINLEITEN
with Secure Msg.

fill
-Terminal ID
-Traceno.
-RND6
-Keyno. KGKLT

-MAC
SECURE_MSG_RECEIVE CHIPZKA Response APDU store response APDU for later check of

ISOLZ message, BMP 62
SECURE_MSG_SEND ISOAZ ISO8583 message 0400

Storno
fill

- Traceno. (BMP 11)
- PAC (BMP 52)
- RNDMES + RNDPAC (BMP 57)
- MAC (BMP 64)

check other security relevant fields
SECURE_MSG_RECEIVE ISOAZ ISO8583 message 0410

Storno Response
check MAC and other security relevant
fields.

SECURE_MSG_SEND ISOLZ ISO8583 message 0400
Storno

fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)

check other security relevant fields.
SECURE_MSG_RECEIVE ISOLZ ISO8583 message 0410

Storno Response
check MAC and other security relevant
fields, store BMP62 for later use in
LADEN command.

SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND7 from
chip

store RND7

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN with Secure Msg.

provide complete command from
BMP62 of ISOLZ response , compute
command MAC

SECURE_MSG_RECEIVE CHIPZKA Response APDU check response MAC
GET_JOURNAL ISOLZ Vendor specific
GET_JOURNAL ISOAZ Vendor specific

Page 59
CWA 14050-6:2000

PIN Verification Type 0

SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND0 from
chip

store RND0

SECURE_MSG_SEND CHIPZKA Command APDU
EXTERNAL
AUTHENTICATE

fill
-Keyno. KINFO

-ENCRND
SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU

PUT DATA
fill RND1

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU

READ RECORD
EF_INFO
with Secure Messaging

SECURE_MSG_RECEIVE CHIPZKA record EF_INFO check MAC
SECURE_MSG_SEND CHIPZKA Command APDU

GET CHALLENGE
SECURE_MSG_RECEIVE CHIPZKA Random number RND2 from

chip
store RND2

SECURE_MSG_SEND CHIPZKA Command APDU
VERIFY

provide complete command APDU

SECURE_MSG_RECEIVE CHIPZKA Response APDU

PIN Verification Type 1

SECURE_MSG_SEND CHIPZKA Command APDU
GET KEYINFO

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU

GET CHALLENGE
SECURE_MSG_RECEIVE CHIPZKA Random number RND0 from

chip
store RND0

SECURE_MSG_SEND CHIPZKA Command APDU
MUTUAL AUTHENTICATE

fill ENC0

SECURE_MSG_RECEIVE CHIPZKA Response APDU check ENC1
SECURE_MSG_SEND CHIPZKA Command APDU

VERIFY
provide complete command APDU

SECURE_MSG_RECEIVE CHIPZKA Response APDU check MAC

„Laden vom Kartenkonto“
(both types)

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN EINLEITEN

fill
-Terminal ID
-Trace No.

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND ISOLZ ISO8583 message 0200

Ladeanfrage
fill

- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)

check other security relevant fields.
SECURE_MSG_RECEIVE ISOLZ ISO8583 message 0210

Ladeantwort
check MAC and other security relevant
fields.

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN

SECURE_MSG_RECEIVE CHIPZKA Response APDU

GET_JOURNAL ISOLZ Vendor specific

Page 60
CWA 14050-6:2000

Reversal of a „Laden vom
Kartenkonto“

SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BÖRSE

SECURE_MSG_RECEIVE CHIPZKA Response APDU

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN EINLEITEN

fill
-Terminal ID
-Traceno.

SECURE_MSG_RECEIVE CHIPZKA Response APDU

SECURE_MSG_SEND ISOLZ ISO8583 message 0400
Storno

fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)

check other security relevant fields.
SECURE_MSG_RECEIVE ISOLZ ISO8583 message 0410

Storno Response
check MAC and other security relevant
fields

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN

SECURE_MSG_RECEIVE CHIPZKA Response APDU

GET_JOURNAL ISOLZ Vendor specific

Unload

SECURE_MSG_SEND CHIPZKA ENTLADEN EINLEITEN fill
-Terminal ID
-Trace No.

SECURE_MSG_RECEIVE CHIPZKA Response APDU

SECURE_MSG_SEND ISOLZ ISO8583 message
Entladeanfrage 0200

fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)

check other security relevant fields.
SECURE_MSG_RECEIVE ISOLZ ISO8583 message

Entladeantwort 0210
check MAC and other security relevant
fields

SECURE_MSG_SEND CHIPZKA ENTLADEN
SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA ENTLADEN EINLEITEN fill

-Terminal ID
-Trace No.

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND ISOLZ ISO8583 message

Entladequittung 0202
fill

- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)

check other security relevant fields.
SECURE_MSG_RECEIVE ISOLZ ISO8583 message

Entladebestätigung 0212
check MAC and other security relevant
fields

SECURE_MSG_SEND CHIPZKA Command APDU
ENTLADEN

SECURE_MSG_RECEIVE CHIPZKA Response APDU
GET_JOURNAL ISOLZ Vendor specific

Page 61
CWA 14050-6:2000

Repeated Messages
(Stornowiederholung /
Entladequittungswiederhol
ung)

SECURE_MSG_SEND ISOLZ ISO8583 message
Stornowiederholung 0401 or
Entladequittungswiederholung
0203

fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)

check other security relevant fields.
SECURE_MSG_RECEIVE ISOLZ ISO8583 message

Stornoantwort 410 or
Entladebestätigung 0212

check MAC and other security relevant
fields

GET_JOURNAL ISOLZ Vendor specific

